Поворотный стол с пультом

Обновлено: 11.05.2024

Привет, Хабр! В предыдущей статье я рассказывал о наших продуктах – поворотных столах для круговой фотосъёмки. За прошедшее время нам удалось серьёзно продвинуться вперёд и разработать новые устройства на базе Ардуино с использованием коллекторных и бесколлекторных двигателей.

Поворотный стол не такое уж простое техническое изделие как может показаться на первый взгляд. Например, в автоматическом режиме стол поворачивается на нужный угол, выдерживает паузу для того чтобы предмет съёмки смог успокоиться и стать неподвижным, автоматически делает снимок с фотоаппарата, затем некоторое время ожидает окончания экспозиции и переходит к следующему шагу. Так стол совершает полный оборот, и получается серия снимков предмета со всех сторон. Есть и другие режимы работы.

Мы выпускаем столы разных размеров. Самые ходовые – с диаметром столешницы 400, 600 и 900 миллиметров. Столы способны вращать довольно приличный груз, например, стол 600 выдерживает 150 кг, а стол 900 – 250 кг. Как-то приходилось делать по спецзаказу стол диаметром 2700 миллиметров, выдерживающий груз до 700 кг.

Как говорилось в части 1, стол с промышленным контроллером выходил слишком дорогим, поэтому мы решили переходить на Ардуино. Кроме того, мы хотели заменить шаговый двигатель коллекторным.

Почему мы решили менять двигатель? Шаговый двигатель – отличный вариант для программирования. Не надо заботиться о том, как переместить стол на заданное расстояние, всё уже сделано за нас. Шаговый двигатель оснащён логическим контроллером, просто используй нужные команды и ни о чём не думай.

Но есть один существенный недостаток. Шаговый двигатель сильно шумит. Иногда двигатель попадает в резонанс, и тогда тарахтение стола становится невыносимым.

Новая схема работы стола была простой: есть двигатель с питанием на 24 вольта и встроенным редуктором. Двигатель вращает столешницу и управляется через преобразователь ШИМа, так называемый драйвер двигателя. К вращающейся столешнице подсоединён оптический энкодер, передающий текущее положение в скетч Ардуино, который должен управлять двигателем посредством ШИМ-сигнала. И первой моей задачей было научить скетч перемещать стол из точки A в точку B.

Признаться, начинал я эту работу с некоторой робостью. Придётся ли погружаться в изучение ТАУ-регуляторов? Если да, то, скорее всего, надо будет оперировать значением мгновенной скорости. Позволит ли медленная и ограниченная ардуина проводить необходимые вычисления в реальном времени? К счастью, всё оказалось намного проще.

Наш первый макет. Arduino Uno, двустрочный дисплей, кнопки

Наш первый макет. Arduino Uno, двустрочный дисплей, кнопки

Итак, скетч должен получать данные от энкодера и управлять двигателем посредством ШИМ-сигнала. Библиотека для энкодера сразу нашлась. Называется, как ни странно, Encoder, легко находится в менеджере библиотек Arduino IDE. Выводы энкодера подсоединяем к пинам 2 и 3, чтобы использовать прерывания – так значения текущего положения стола будут максимально близки к реальности.

Через какое-то время выяснится, что энкодер тем не менее слегка привирает. В чём дело? Плохой энкодер? Библиотека? Несколько отладочных скетчей, измерение импульсов, всё не то… Проблема в том, что мест, где может возникать ошибка энкодера, множество. Да и ошибка плавающая, то она есть, то нет. И вдруг совершенно случайно обнаруживается, что текущая конструкция стола несколько мм… шаткая что-ли. Раньше это было незаметно, ведь обратная связь в системе отсутствовала. А в новом изделии небольшой люфт приводил к большой погрешности в показаниях энкодера, так что потребовалось сделать конструкцию более жёсткой.

Ну что ж, теперь можно приступать к решению главной задачи по перемещению стола на заданное расстояние. Двигатель управляется ШИМ-сигналом. Это значение от единицы до 255, если не использовать большее разрешение. Сразу выяснилось, что двигатель с редуктором начинает вращать стол с некоторого минимального значения ШИМ. На первом макетном столе это значение равнялось 60.

Итак, попробуем реализовать самый простой алгоритм: первую половину пути линейно увеличиваем ШИМ, вторую половину – линейно уменьшаем:


Если значение ШИМ превышает 255, оно будет обрезано:


Угол наклонных прямых на графике можно сделать настраиваемым, тогда пользователь сможет регулировать движения и шаги стола: сделать их более резкими и быстрыми, либо плавными и медленными. И оказалось, что этот простейший подход даёт неплохие результаты!

Правда, иногда стол всё-таки слегка перескакивал через заданную точку. На этот случай мы предусмотрели коррекционное перемещение для возврата назад на минимальном ШИМе. Тем не менее, хотелось бы добиться того, чтобы стол совершал минимальное количество таких ошибок.

Если на минимальном ШИМе стол безошибочно переходит в нужную точку, то что надо сделать? Может быть, стоит использовать квадратичное замедление вместо линейного? Тогда стол будет подходить к концу движениях на скоростях, близких к минимальному значению. Можно и так. Но оказалось, что есть более простое решение. Достаточно начинать тормозить чуть раньше, как на картинке:


Большое значение имеет правильный выбор минимального значения ШИМ. Если значение слишком велико, стол будет часто ошибаться и перескакивать через заданную точку. Слишком маленькое значение приведёт к тому, что нагруженный стол не сможет тронуться.

Тут родилась идея о том, что столу с тяжёлым грузом надо помогать начать движение. То есть если стол в течение определённого промежутка времени не сдвигается с места, надо слегка увеличивать минимальный ШИМ. Но нужно также предусмотреть и верхний лимит увеличения, чтобы в случае короткого перемещения стол не перескочил через заданную точку.

В процессе тестирования выяснилась странная вещь: вроде бы стол вовремя останавливается, но затем оказывается, что текущая позиция немного смещена. Особенно это заметно, если на столе стоит тяжёлый и неустойчивый предмет, например, канистра с плещущейся водой. Стало понятно, что это происходит в результате вибрации в конце движения. Чтобы дождаться полного окончания движения стола и принять решение о необходимости коррекции, нужно подождать какое-то время. Я решил задачу так: делю время на короткие интервалы по 10 мс и дожидаюсь, пока в течении десяти последних интервалов стол не меняет своего положения. Это позволяет минимизировать время ожидания. Попробовал трясти стол с грузом в конце движения – и класс! Стол ждёт, пока тряска не закончится!

Итак, задача перемещения стола была решена. И решена, как выяснилось, неплохо: калибровочные скетчи и скетчи, измеряющие время и осуществляющие десятки и даже сотни циклов по перемещению стола на 360°, приводили стол в исходное положение с точностью до долей миллиметра.

Теперь можно было приступать к реализации режимов стола: автоматическому, ручному, безостановочному, режиму видео и вращению на 90°. Тут дело техники. Упомяну только о том, что в шаговых режимах, автоматическом и ручном, была реализована ещё одна стадия отслеживания ошибок перемещения. Если на предыдущем шаге обнаружилась ошибка, её надо учесть и скорректировать количество меток энкодера, на которое надо переместить стол на следующем шаге. Это важно, поскольку стол в процессе работы может быть случайно сдвинут фотографом.

Как мы и предполагали, новый двигатель работал гораздо тише шагового. Тем не менее, во время работы был слышен лёгкий звон. Дело в том, что стандартная частота ШИМ в Ардуино менее 1 кГц, именно она и ощущается при работе мотора. После того, как мы увеличили частоту ШИМ до 15 кГц при помощи библиотеки PWM, звон исчез. Звук работающего двигателя стал приятным и чем-то напоминал звук движений Робокопа из голливудского фильма. После изменения частоты пришлось немного подкорректировать минимальное значение ШИМ в скетче.

Коллекторный двигатель с редуктором, который мы использовали в первом экспериментальном столе Драйвер двигателя – устройство, преобразующее ШИМ в управляющие сигналы

Теперь об управлении. Мы предполагали, что стол будет управляться при помощи проводного пульта. Предыдущий опыт общения с пользователями говорил о том, что длина кабеля должна быть достаточно большой, не менее 5 метров. Когда-то мы пытались использовать беспроводные пульты, но этот опыт был не слишком удачным.

Кроме того, надо было предусмотреть дисплей. Режимов и настроек не так уж и мало, надо информировать пользователя о текущем состоянии. Нашли на Алиэкспресс подходящие коробочки. Вот таким получился пульт, с управляющим энкодером, кнопками и дисплеем:


По ходу дела попался нам на глаза китайский бесщёточный двигатель. Вот такой:


Ему не нужен драйвер, контроллер у него внутри, и ШИМ можно подавать непосредственно на выходы. Кроме того, не нужно менять частоту ШИМ, он работает одинаково тихо на любой частоте. Позже стало ясно, что это тоже важно.

В один прекрасный момент посмотрели мы на наш пульт и подумали, что как-то он не слишком удобен. Надо крутить энкодер, чтобы попасть в нужный пункт меню, жать кнопку, проваливаться в подменю… Да тут ещё и проблема с дисплеем нарисовалась. Подсоединён он у нас был к двум пинам ардуинки и управлялся по протоколу I2C. Оказалось, что если быстро крутить управляющий энкодер и переключать пункты меню на экране, дисплей начинает глючить, пропускать или путать буквы, а через какое-то время и вовсе зависает.

А что, если вообще отказаться от пульта и использовать вместо него смартфон? Мобильное приложение может отображать движения стола в реальном времени и вообще сделает процесс управления очень удобным. Соединяться со столом можно через bluetooth, тут проблем нет. Кроме того, в мобильном приложении можно реализовать такие фишки пользовательского интерфейса, которые трудно сделать на пульте, например, поворот стола на произвольный угол. Так у нас начался второй этап разработки.

Со средой разработки вопросов не было, это должен быть Xamarin. Во-первых, у меня уже был опыт разработки на этой платформе. А во-вторых, нужно приложение и для Android, и для iOS. Многие фотографы – пижоны, и любят пользоваться айфонами.

Xamarin не предоставляет стандартных средств для работы с bluetooth, поэтому пришлось искать библиотеку. Я остановился на Bluetooth LE. Собственно, и выбора-то особого не было, да и где-то на форумах MSDN сотрудник Microsoft рекомендовал эту библиотеку для работы в Xamarin. На первый взгляд, плагин оставлял впечатление какой-то незавершённости, но потом оказалось, что он вполне рабочий.

О железе: вначале я использовал имеющийся у меня bluetooth модуль HC-6. Он не подходил для полноценной работы, поскольку нам был нужен bluetooth не ниже 4 версии, то есть bluetooth low energy – iOS в отличие от Android не работает со старыми версиями. Но я набросал нечто вроде тестового фреймворка для первых экспериментов. Потом мы перешли на модули JDY-34, вот такие:


Пришло время изучать Bluetooth GATT. И вот что я вам скажу: вроде и Интернет у нас есть, и информации море, а найти то, что тебе нужно, с каждым годом всё сложнее и сложнее. В общем виде оно вроде бы понятно: GATT как иерархическая структура, устройство, сервисы, характеристики, но вот детали…

Вспоминаю прекрасные руководства пользователя по операционным системам, программам и библиотекам 30-летней давности. Любая библиотека имела исчерпывающее описание всех методов и возможностей, это было очевидно и даже не обсуждалось. Написаны они были простым английским языком, и там можно было найти всю необходимую информацию. Кроме руководств своевременно выходили объёмные учебники, детально объясняющие все тонкости и проблемы.

Сейчас всё не так. Фреймворки меняют друг друга с калейдоскопической быстротой. Гайды пишутся, скорее, для галочки, а то их и вовсе нет. Массу времени приходится тратить на сбор информации в Интернете по крупицам… Да, судари мои, куда катится этот мир?

Исходя из архитектуры приложения, мне были нужны две возможности – write, чтобы посылать команды, и notify, чтобы получать ответы и уведомления. Но какую GATT-характеристику следует выбрать? В модуле JDY-34 есть несколько подходящих. Где-то в одном из описаний я нашёл UUID сервиса как в моём модуле и решил, что эту характеристику и надо использовать для записи и нотификации.

В этом и заключалась моя ошибка. Сначала вроде бы всё работало, но потом я стал замечать, что иногда ответы от стола приходят в искажённом виде. Вскоре я понял, что проблема заключается в следующем: приложение отправляет команду столу, но в это самое время от стола приходит очередной токен, и данные в общем буфере портятся. Как оказалось, никакой синхронизации на уровне характеристики нет, то есть запись и чтение могут перекрывать друг друга, и другого выхода, кроме использования раздельных характеристик для write и update нет. К счастью, модуль JDY-34 позволяет сделать это.

В итоге, мобильное приложение получилось таким:

И вот пришло время решать вопрос с комплектующими. Платы Nano были ненадёжны, среди модулей JDY-41 попадались бракованные. Предлагать недешёвое изделие с подобной начинкой – это неуважение к покупателю. Хотелось бы найти хорошие надёжные платы со встроенным bluetooth.

Первое, что мы попробовали, – это ESP32, но она нам не зашла. То ли плата была левая, то ли делали мы что-то неправильно, но нам никак не удавалось заставить работать энкодер.

Потом мы стали смотреть в сторону BLE Nano V3.0 Micro с интегрированным чипом Bluetooth TI CC2540 BLE. Тут вообще интересная история случилась: вроде как и характеристики были такие же, как в модуле JDY-34, вплоть до совпадения UUID, но характеристика для записи не работала. То есть нотификация и чтение работает, а запись – нет.

Хорошо, если найти подходящую плату со встроенным bluetooth модулем не получается, надо хотя бы заменить устаревшие китайские Nano на что-то приличное. Вот в Москве есть в продаже фирменная Nano Every, позиционируется как эволюция традиционной Nano. Но – парадокс! библиотека PWM на ней не работает, и, похоже, возможности устанавливать частоту ШИМ для отдельных пинов нет вовсе. Можно, правда, ускорить системное время, тогда и частота увеличится. Не слишком элегантно, но этот подход работает. Надо только увеличить все временные интервалы, использующиеся в скетче, ведь функции millis и micros будут выдавать ускоренное время.

Тем не менее, такой подход довольно стрёмный. Вот, например, функции чтения в классе Serial используют временную задержку. Выходит, надо её переустанавливать при помощи Serial.setTimeout. А сколько ещё подобных подводных камней?

Под конец нам всё-таки удалось найти плату с интегрированным bluetooth модулем. Это Nano 33 IoT. Эта плата позволяет программно сконструировать в скетче bluetooth-устройство со всеми его сервисами и характеристиками, используя библиотеку ArduinoBLE. Библиотека эта реализует полноценный GATT. Это здорово! Программисты меня поймут – я был впечатлён!

И напоследок о моторах. Бесколлекторный двигатель, конечно, предпочтительней. Он не требует драйвера, но самое главное – не нужно менять частоту ШИМ, двигатель не звенит на стандартной частоте. На самом деле, важнейшей характеристикой является передаточное число, чем оно больше – тем лучше. На достаточно большом передаточном числе стол работает очень устойчиво. Кроме того, можно добиться медленного перемещения стола на минимальном ШИМе, а это важно для безостановочного режима.

Наш финальный выбор – бесщёточный двигатель с передаточным числом 131 и плата Nano 33 IoT.

Кабели для соединения разных фотоаппаратов со столом

Кабели для соединения разных фотоаппаратов со столом

На всякий случай оставлю ссылки на исходники, вдруг кому-то будет интересно:

Для тех, кто не знаком с проектом


ФотоПицца — это открытый проект поворотного предметного стола для фотосъемки объектов со всех сторон (3D-фото-360, спин-фото). Блок управления платформы основан на Arduino.
Вы можете самостоятельно собрать данное устройство из доступных компонентов, используя подробные инструкции, причем, вам не понадобятся глубокие познания в электронике.
Официальная страница проекта

Новая платформа сделана из ПВХ (Поливинилхлорид) и весит всего 5 кг при этом выдерживает нагрузку до 40 кг
Для грузоподъемности до 100 кг платформу нужно собирать из акрила.


Преимущества и недостатки использования материала ПВХ

Очень легкий материал и подходит для поворотных платформ с небольшой грузоподъемностью (30-50 кг), грузоподъемность зависит от равномерности распределения массы фотографируемого объекта по плоскости вращающегося диска. Если правильно распределить вес, можно поставить объект весом и в 60-70 кг. Из-за маленького веса, платформу удобно применять для выездной фотосъемки, даже с учетом транспортировки с помощью общественного транспорта. Белый материал упрощает съемку объектов на белом фоне, но не рекомендую использовать стандартный диск любой платформы для потоковой съемки. Диск изнашивается, пачкается и поэтому, сверху необходимо класть дополнительный круг из бумаги, а лучше из тонкого, матового пластика, толщиной, приблизительно 0,7 мм. В отличии от акрила, ПВХ материал намного мягче и может продавливаться после приложения точечной нагрузки, в то же время, он более популярен в сфере наружной рекламы, стоит дешевле и легко найти обрезки для деталей поворотной платформы.

Новая конструкция прижимной системы стала проще и эффективнее


Также в новой конструкции предусмотрена возможность сборки с фиксацией верхнего диска.

А вот и процесс сборки платформы

Характеристики платформы

В данной, не прозрачной версии платформы, верхний диск крепиться жестко и не снимается без раскручивания гайки центральной оси
Материал — ПВХ 10 мм
Номинальная грузоподъемность — 30 кг
Максимальная грузоподъемность — 40 кг
Может вращать и человека, весом до 75 кг, но эксплуатация при такой нагрузке не рекомендуется.
Диаметр круга — 480 мм
Подходит для фотограмметрического 3D-сканирования объектов — это способ построения 3D-модели на основе анализа последовательности кадров с разным ракурсом.
Возможная скорость съемки — 100 кадров за 15 секунд
Настраиваемые параметры вращения — ускорение, скорость вращения, бесконечное вращение, вращение на определенное количество шагов, 4 настраиваемые программы
Дистанционное управление ИК пультом и кнопками снизу экрана
Возможна автономная работа

Использование в качестве подвесной системы:
Номинальная грузоподъемность — 5 кг
Максимальная грузоподъемность — 10 кг

Вес и физический размер:
Вес полного комплекта — 5 кг
Высота — Зависит от высоты двигателя,70-90 мм
Длинна, со стороны двигателя — 565 мм
Ширина — 524 мм
Диаметр вращающегося диска — 480 мм

Файлы для скачивания

Файлы для резки материала
2 файла, для прозрачного и непрозрачного пластика, отличаются окошком для дисплея в блоке управления.
Файлы представлены в форматах *.cdr и *.eps

Файл для прошивки Arduino
Следующая версия прошивки будет поддерживать управление затвором фотоаппарата через ИК порт или провод.

Поворотные столы для 3D съемки большой грузоподъемности с автоматическим вращением (серия SA)

Ввозможно управление поворотным столом при помощи нашего приложения с компьютера (устройства с установленной ОС Windows 10 или Windows 11). Для этого компьютер должен обладать устройством Bluetooth.

Любую профессиональную и полупрофессиональную камеру можно подключить к Поворотному столу с помощью спускового тросика, который прилагается.

Преимущества:
Удобство управления (Смартфон используется в качестве пульта).

Быстрее, Тише, Выше (уровень точности позиционирования), Больше режимов (возможностей).

Поворотные столы серии SA проработают для вас долгий срок благодаря надёжной конструкции (нечему ломаться) и продуманной механике электропривода.

Поворотный стол SA Муравей

Поворотный стол SA Муравей

Поворотный стол SA Пес

Поворотный стол SA Пес

Поворотный стол SA Пес

Особенности поворотных столов SA

Поворотный стол (ПС) предназначен для 3D-фотосъемки, имитирующей вращение с поворотом на 360 градусов, видеосъемки крутящихся объектов и 3D-сканирования. Большой (300 мм) диаметр опорного подшипника разгружает вал двигателя. Грузоподъемность позволяет фотографировать крупную бытовую технику, а так же одного-двух человек. Конструкция предусматривает работу стола в перевернутом состоянии для вращения предметов, которые трудно или невозможно поставить, например, триммер для косьбы, велосипед.

Процесс фотографирования предмета на поворотном столе под управлением мобильного приложения:

Нужна консультация? Ответим на ваши вопросы:

На какой вес рассчитан поворотный стол SA

Модель

Нагрузка

Заказать

Цифры даны для статической нагрузки в центре. Максимальная нагрузка на краю поворотного круга: 40–100 кг

Поворотный стол легко выдерживает вес взрослого человека:

Для съемки объектов, раскачивающихся при малейшем движении (например, букетов) предусмотрен режим съёмки с остановками:

О синхронизации поворотного стола SA с фотокамерой:

В процессе съёмки поворотный стол отправляет на фотокамеру сигналы срабатывания затвора. Фотокамера подключается к поворотному столу типовым кабелем - электронным спусковым тросиком. На корпусе поворотного стола находится разъём синхронизации с фотокамерой. Для камер различных моделей (Canon, Nikon, Pentax, Sony) выпускаются свои кабели, они имеют соответствующий разъём со стороны камеры. А со стороны поворотного стола у всех кабелей разъём одинаковый, универсальный.

Ваша фотокамера

Модификация кабеля-тросика

Если вы фотографируете камерой смартфона или планшета (которые не имеют возможности синхронизации с поворотным столом по кабелю), рекомендуем вам приложение Open Camera для Android. Приложение позволяет вести съёмку серий кадров в автоматическом режиме с дистанционным управлением голосом или другим звуком, не касаясь устройства в процессе съёмки. Время задержки между кадрами можно настраивать. Приложение Open Camera доступно бесплатно на Google Play.

Мобильное приложение для управления поворотным столом SA

Мобильное приложение для управления поворотным столом SA

Мобильное приложение для управления поворотным столом SA

Режимы работы и настройки:


На корпусе поворотного стола также имеется стикер с QR кодом, по этому коду вы сможете скачать паспорт на поворотный стол (руководство) и мобильное приложение.

Дополнительные возможности поворотного стола SA - 360° съемка подвешенных предметов

Поворотный стол SA может быть закреплён на потолке в перевёрнутом положении, а диск поворотного стола снабжён приспособлениями для подвески.

Результаты 360° фотосъёмки и видеосъемки велосипеда в подвешенном виде на нескольких лесках с помощью поворотного стола SA:

Токосъёмники

Токосъёмник позволяет снимать на поворотном столе электроприборы, светильники и т.д., подключённые к электросети в момент съёмки

Отзывы клиентов о поворотных столах SA:

Отзыв клиента о поворотном столе SA

Отзыв клиента о поворотном столе SA

Отзыв клиента о поворотном столе SA

Отзыв клиента о поворотном столе SA

Как я покупал стол с регулируемой высотой


В этом небольшом посте хотелось бы затронуть одну из важных проблем, с которой сталкивается любой житель Хабра – неудобство постоянного положения «сидя» и отсутствия возможности «постоять» при работе за компьютером

Да, каких-то пару лет назад Kotyamba в своём посте «Идеальный стол для ежедневной работы за компьютером» предложил решение данной проблемы, но меня расстроило отсутствие примерных цен, различных сравнений, процесса сборки стола и прочих «лакомств», без которых Хабр становится унылым и скучным

Поэтому я решил поделиться своим опытом и информацией, собранной во время покупки такого интересного стола

С чего всё началось?

В один прекрасный день, закончив работу над очередным проектом и вставая из-за своего рабочего места, я вдруг задумался: «Как круто было бы, если стол подстраивался под меня, а не я под стол»

Мысль мне показалась более, чем здравой, и весь вечер того дня был потрачен на поиск такого стола и оценку предложений от ведущих ИМ, предлагающих такое чудо

К чему привели эти поиски?

«Детище» Хабра — Декарт v3.2
  • Стоимость 14 600 RUR (+ около 7 000 RUR доставка)
  • Регулировка стола: газлифт
  • Ход: 380 мм
  • Регулировка высоты: 74 – 112 см
  • Грузоподъемность: до 45 кг
ErgoStol Duo
  • Стоимость 27 900 RUR (+ 2 000 RUR доставка)
  • Регулировка стола: электрическая
  • Ход: 520 мм
  • Регулировка высоты: 66 – 118 см
  • Грузоподъемность: 70 кг

На окончательный выбор стола повлиял механизм подъема: встречал много мнений, что газлифт – довольно-таки не удобная и не рассчитанная на большой груз конструкция. Так же небольшой отзыв на Лайфхакере «намекнул» на то, что с такой регулировкой стола можно немного попотеть:

Ключевое слово тут «электро-регулируемый» — это значит, что вам не нужно будет постоянно что-то передвигать и откручивать. Достаточно всего лишь нажать на кнопку и стол поднимется или опустится до желаемой высоты

Да, признаюсь, цена декарта радовала, но я ведь на столе еще и покататься хочу выбирал себе стол на долгое время, поэтому обращал внимание на полезные свойства стола с точки зрения целевого использования.

В то же время в Duo меня подкупило наличие дополнительных гаджетов в виде выдвижной розетки и пропуска кабелей. Мелочи, но, черт побери, приятно.

И так, выбор пал на ErgoStol Duo, который впоследствии был успешно заказан.

Пару слов о доставке

Учитывая, что я живу не так близко к столице (г. Ставрополь), порадовала относительно быстрая доставка стола: заказ был сделан 4 июня, а получен уже 10 июня.

Все было упаковано в жесткий картон. Помимо этого, в магазине меня заверили, что в случае порчи товара транспортной компанией, мне бесплатно будет выслан новый экземпляр.

Сборка стола – на удивление, легкая задача

Вооружившись инструментами и, скачав инструкцию по сборке, я приступил к работе.
Стол был собран приблизительно в течение 20 – 25 минут.

Сам процесс сборки решил прокомментировать, дабы некоторые моменты либо не сходились с инструкцией, либо были плохо в ней описаны.

И так, распаковываем посылку









Далее соединяем две ножки между собой, получая раму, на которую уже можно положить столешницу





Затем самое интересное: так как мотор встроен только в одну ножку, то соединяем его со второй с помощью траверса. Как мне объяснили в службе поддержки, траверс можно делать любой длины (до 180 см), что позволяет заказывать столы длинной 2 — 2,5 метра (для конференций, возможно, самое то)









Все, рама готова
Теперь кладем столешницу на пол и прикладываем к ней раму. Выравниваем дырки в раме с отверстиями в столешницы и притягиваем все это саморезами, идущими в комплекте

Потом подключаем питание, которое состоит из блока питания и пульта управления





Добавляем последние штрихи








И финальный вариант, к которому мы так долго шли

Отдельно скажу про пульт управления: он довольно хитрожопый «хитрый» (еще бы – целых две кнопки), и, чтобы стол ехал, надо зажать обе кнопки в одном направлении. Как мне объяснили по телефону, это не баг, как можно было бы подумать, а фича — защита от случайных нажатий и от детей

Общие впечатления

Пользуюсь уже более трёх недель – полёт нормальный

В основном, работаю за компьютером посредством чередования положений: например, около 1 часа работаю сидя, потом минут 20 – 25 стоя. Еще можно во время смены положения проговаривать: «Мы писали, мы писали – наши пальчики устали…». Хотя, наверное, так говорили только в моей школе. Или нет?

Напоследок немного интересных фактов

  • Этот пост был написан исключительно стоя
  • На столе очень нравится кататься детям
  • Стол прибавляет +10 к таланту выносливости
  • Работая за таким столом, всегда находишься в центре внимания любопытных окружающих (родственников, друзей, знакомых)

UPD от 02.12.2017 г.

Прошло уже несколько лет после публикации статьи, а мне до сих пор сыпятся вопросы в социальных сетях и по почте по поводу выбора подобного стола.

За это время довелось собрать ещё несколько столов знакомым от разных производителей, поэтому тем, у кого появляется желание написать мне, предлагаю этого не делать, а почитать дальше.

Мое внимание в данный момент привлекает модель стола Shapdesk, которая заметно выигрывает по стоимости и имеет возможность комплектации столов дубовыми столешницами. Остальные работают пока только с ЛДСП и, как мне кажется, это не комильфо.


Главное в этой истории: чередуйте работу сидя и стоя. А еще лучше занимайтесь спортом и употребляйте здоровую пищу.

Читайте также: