Шкаф управления двигателем схема

Обновлено: 17.05.2024

Управление электродвигателем может осуществляться с помощью различных устройств: шкафов, щитов, пускателей, блоков и так далее.

Шкафы управления служат для обеспечения ручного и автоматического управления различными исполнительными устройствами. Они состоят из силовых коммутационных аппаратов, устройств защиты, преобразователя частоты. С помощью электрического шкафа можно осуществлять управление электродвигателем в соответствии с поставленной задачей.

Шкаф управления электродвигателями обеспечивает непрерывный контроль изменений параметров системы для обеспечения оптимального режима работы устройства.

Ящики (шкафы) управления серии Я5000 (рис. 1) обеспечивают управление (местное, дистанционное и автоматическое) электродвигателями асинхронными (мощностью до 75 кВт). При этом поддерживаются различные режимы работы (продолжительный, кратковременный, повторно-кратковременный). Шкафы данного типа могут различаться по ряду технических характеристик, в том числе:

  • наличию реверса у двигателя;
  • числу управляемых двигателей;
  • наличию переключателя на автоматический режим;
  • способу питания цепи управления.

Корпус ящика управления Я5000 выполнен в виде сварной конструкции. Дверь, фиксируемая замком и укрепленная на петлях, обеспечивает надежную степень защиты (IP 31, IP 54). Аппаратура размещена частично на внутренней стороне двери и монтажной панели.

К основным преимуществам данного оборудования можно отнести:

  • усовершенствованную конструкцию корпуса, обеспечивающую рациональное использование рабочего объема;
  • высокую технологичность и простоту сборки;
  • высокую степень электробезопасности.

Пусковая аппаратура для управления электродвигателем — неотъемлемая часть электропривода. Данная аппаратура предназначена для запуска, регулирования скорости, торможения, реверсирования и остановки электродвигателей. Правильная эксплуатация электропривода возможна только при использовании соответствующей электрической аппаратуры.

В настоящее время существует немало различных способов пуска электродвигателей. Это обусловлено тем, что современным энергоэффективным двигателям, отличающимся более высокими пусковыми токами, необходимо обеспечить плавный пуск.

Аппаратура прямого пуска осуществляет пуск, защиту от перегрузок и отключение электродвигателей. Данный способ используется в случае стабильного питания двигателя, который жестко связан с приводом, например, насоса.

Пусковая система «звезда–треугольник» служит для понижения пускового тока. Необходимость переключения со «звезды» на «треугольник» существует для мощных трехфазных асинхронных двигателей мощностью от 30–50 кВт и высокооборотных (около 3000 об/мин). На обмотку двигателя, соединенного в «звезду», подается 220 В, затем, после полного набора оборотов, двигатель переключается на «треугольник» и подается 380 В.

Подключение двигателя зависит от расположения перемычек на клеммной колодке (рис. 2). Автоматическое переключение осуществляется путем использования контактов магнитных пускателей (рис. 3).

Для изменения направления вращения асинхронного двигателя нужно поменять местами две фазы. Эту замену можно осуществить с помощью магнитного пускателя реверсивного типа (рис. 4).

Таким образом, ящик управления электродвигателем выполняет ряд важных функций. Он может быть использован для управления как обычными, так и реверсивными двигателями. Они пригодны к эксплуатации в условиях, когда имеется повышенная влажность и запыленность, в широком диапазоне температур окружающего воздуха (от –40 °С до +45 °С).

Три наиболее популярные схемы управления асинхронным двигателем

Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.

Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.

С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.

Асинхронный двигатель с короткозамкнутым ротором

Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.

В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.

Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.

Электромагнитный пускатель

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.

Наиболее часто в станках, установках и машинах применяются три электрические схемы:

схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок "пуск" и "стоп",

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.

Разберем принцип работы всех этих схем.

1. Схема управления двигателем с помощью магнитного пускателя

Схема показана на рисунке.

Схема управления двигателем с помощью магнитного пускателя

При нажатии на кнопку SB2 "Пуск" на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем ( N) . Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке "Пуск". Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.

Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки "Пуск" катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют "толчковым". Применяется он в некоторых установках, например в схемах кран-балок.

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 "Стоп". При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку "Стоп" и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 "Пуск". Таким образом, магнитный пускатель обеспечивает т.н. "нулевую защиту". Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала. Подробнее смотрите здесь - защита минимального напряжения.

Анимация процессов, протекающих в схеме показана ниже.

2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы - A , B , С, а при включении пускателя KM2 - порядок фаз меняется на С, B , A.

Схема показана на рис. 2.


Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1 . При необходимости смены направления вращения необходимо нажать на кнопку SB1 "Стоп", двигатель остановится и после этого при нажатии на кнопку SB 3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку "Стоп".

Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок "Пуск" SB2 - SB 3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки "Пуск" включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.

Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.

3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)

Схема показана на рисунке.

Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок

Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 "Стоп"включены по 2 контакта кнопок SB2 и SB 3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB 3 - нормально-закрытый (размыкающий) контакт, в цепи КМ3 - кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB 3 - нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.

Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку "Стоп", что очень удобно. Кнопка "Стоп" нужна для окончательной остановки двигателя.

Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B . Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Схемы управления электроприводами из нескольких мест

Схема на рис. 2 позволяет осуществлять дистанционное реверсивное управление электродвигателем с движущегося объекта. Эта схема применяется, например, для управления с крана двигателями крышек нагревательных колодцев. Схемы сигнализации и получения различных сигналов приведены на рис. 3 — 9.

Схема реверсивного управления двигателя с редкими реверсами «назад»

Рис. 1. Схема реверсивного управления двигателя с редкими реверсами «назад».

Схема реверсивного управления двигателем через один троллей управления

Рис. 2. Схема реверсивного управления двигателем через один троллей управления.

Схема сигнализации состояния нереверсивного электропривода

Рис. 3. Схема сигнализации состояния нереверсивного электропривода.

Схемы получения сигнала с выдержкой времени после начала воздействия длительного (а) и импульсного (б) сигнала

Рис. 4. Схемы получения сигнала с выдержкой времени после начала воздействия длительного (а) и импульсного (б) сигнала: К—контакт деблокировки, 1 — контакты в схему управления приводом.

Схемы получения сигнала после конца воздействия (от хвоста) сигнала Н длительного (а); импульсного (б); импульсного с выдержкой времени (в)

Рис. 5. Схемы получения сигнала после конца воздействия (от хвоста) сигнала Н длительного (а), импульсного (б), импульсного с выдержкой времени (в). К — контакт деблокировки, 1, 2, 3 — контакты в схему управления приводом.

Схема получения длительного сигнала после начала вторичного сигнала Н

Рис. 6. Схема получения длительного сигнала после начала вторичного сигнала Н.

Схема получения импульсного сигнала с выдержкой времени после вторичного воздействия сигнала Н (КТ1 составляет 0,2—0,8 с; КТ2 0,3 с; КТЗ 0,5 с). 1 — контакты в схему управления приводом

Рис. 7. Схема получения импульсного сигнала с выдержкой времени после вторичного воздействия сигнала Н (КТ1 составляет 0,2—0,8 с; КТ2 0,3 с; КТЗ 0,5 с). 1 — контакты в схему управления приводом.

Схема получения сигнала определенной продолжительности независимо от длительности нажатия кнопки

Рис. 8. Схема получения сигнала определенной продолжительности независимо от длительности нажатия кнопки: 1 — контакт в схему управления приводом.

Счетные схемы служат для автоматического воздействия на электропривод после отсчета заданного количества операций или циклов. Они могут отсчитывать замыкания и размыкания (рис. 10), только замыкания (рис. 11) или только размыкания (рис. 12).

Импульсы для счета по указанным схемам подаются контактами фотореле, путевых выключателей или других аппаратов.

В счетной схеме, приведенной на рис. 10, применены реле РЭВ850 с магнитным «залипанием» якоря, а поэтому перерыв в подаче напряжения для этой схемы не нарушает счета. В остальных счетных схемах при перерыве подачи напряжения происходит потеря счета импульсов.

Для проверки действия схемы счета (рис. 11) предусмотрены кнопки управления. При каждом нажатии кнопки SB0N схема отрабатывает один счет. Кнопка SB0F служит для сброса счета. Такие кнопки могут быть предусмотрены и в других схемах.

Схемы получения сигналов в две разные цепи при поочередном нажатии одной кнопки

Рис. 9. Схемы получения сигналов в две разные цепи при поочередном нажатии одной кнопки: а — продолжительность сигнала равна длительности нажатия кнопки, б — продолжительность сигнала не зависит от длительности нажатия кнопки, 1 — контакты в схему управления приводом.

Схема счета до двух

Рис. 10. Схема счета до двух.

Импульсами для каждого счета являются одно замыкание и одно размыкание контакта путевого выключателя SQ; 1 — контакты в схему управления приводом.

Импульсами для счета в схемах на рис. 11, 12 являются кратковременные замыкания (размыкания) контакта SQ, причем замкнутого состояния этого контакта должно быть достаточно для втягивания контактора импульсов КНА и одного реле KB (KL).

Схема счета до трех при замыкании контакта SQ

Рис. 11. Схема счета до трех при замыкании контакта SQ.

Схема счета до трех при размыкании контакта SQ

Рис. 12. Схема счета до трех при размыкании контакта SQ

Схемы нереверсивного управления двигателями с двух мест. а — двумя кнопками; б — кнопкой и ключом; в — двумя ключами

Рис. 13. Схемы нереверсивного управления двигателями с двух мест: а — двумя кнопками, б — кнопкой и ключом, в — двумя ключами.

Схема односторонне зависимого реверсивного управления электроприводом с двух мест

Рис. 14. Схема односторонне зависимого реверсивного управления электроприводом с двух мест.

Сброс счета осуществляется линейным контактором KML; время замкнутого состояния контакта SQ должно быть меньше времени включенного состояния контактора KML.

Счетные схемы на несколько больший счет могут быть составлены по аналогии с приведенными схемами, однако при счете больше пяти-восьми или в случаях, когда потеря счета при исчезновении напряжения недопустима, рекомендуется применять счетные реле.

Схемы зависимого реверсивного управления двигателями. а — с двух мест; б — с трех мест

Рис. 15. Схемы зависимого реверсивного управления двигателями: а — с двух мест, б — с трех мест

Может быть применено двигательное счетно-шаговое реле типа Е-526 на счет до 30 или счетно-импульсное реле типа Е 531 с количеством импульсов до 75. Реле работают на переменном токе, а их контакты допускают мощности отключения при 220 В переменного н постоянного тока соответственно 50 и 30 Вт.

Схемы управления электродвигателями из нескольких мест могут быть зависимого управления, односторонне зависимого и независимого (рис. 13). Чаще всего применяют схемы зависимого управления (рис. 15) как наиболее простые. По этим схемам при работе любым аппаратом управления передвижение рукоятки другого аппарата из нулевого в рабочее положение вызывает остановку двигателя.

По схемам односторонне зависимого управления с двух (рис. 14) и трех (рис. 16) мест ключом SA1 можно управлять независимо от положения ключа SA2 (SA2 и SA3). Управление ключом SA2 возможно при нулевом положении ключа SA1 и не зависит от положения ключа SA3. Управление ключом SA3 возможно при нахождении ключей SA1 и SA2 в нулевом положении.

Схема односторонне зависимого реверсивного управления двигателем с трех мест

Рис 16. Схема односторонне зависимого реверсивного управления двигателем с трех мест

Схема независимого реверсивного управления двигателем с двух мест

Рис. 17. Схема независимого реверсивного управления двигателем с двух мест.

Схема независимого реверсивного управления двигателем с трех мест

Рис. 18. Схема независимого реверсивного управления двигателем с трех мест.

В схемах независимого управления (рис. 17 и 18) при работе привода от любого первого ключа (SA1, SA2 или SA3) перевод рукоятки другого ключа не влияет на работу привода. После возвращения в нулевое положение рукоятки первого ключа привод остановится независимо от положения рукоятки второго ключа (или двух других). Новый пуск возможен только после возврата второго ключа (или двух других) в нулевое положение.

Очень часто применяют управление приводом с двух и трех мест по упрощенной схеме (рис. 19); при этом имеется в виду преимущественное управление только с одного первого места (ключ SA1). При работе привода от другого ключа (SA2 или SA3) перевод рукоятки первого ключа из нулевого положения приводит к передаче управления этому ключу.

Упрощенные схемы управления реверсивным электроприводом

Рис. 19. Упрощенные схемы управления реверсивным электроприводом: а — с двух мест, б — с трех мест.

Схемы электрических исполнительных механизмов с электродвигателем

Схемы электрических исполнительных механизмов с электродвигателем

Электрические исполнительные механизмы с электродвигателем предназначены для перемещения различных органов запорно-регулирующей трубопроводной арматуры поворотного принципа действия (шаровые и пробковые краны, поворотные дисковые затворы, заслонки).

Основными узлами исполнительного механизма являются: электродвигатель, редуктор, ручной привод, блок сигнализации положения. В механизмах используются синхронные и асинхронные двигатели переменного тока. Понижение частоты вращения и увеличение крутящего момента осуществляются при помощи комбинированных червячно-зубчатых передач. Ручное управление производится при помощи ручного привода. Воздействие на штурвал нажатием вдоль оси вала при остановленном двигателе приводит к зацеплению ручного привода с валом электродвигателя и передаче крутящего момента на выходной вал.

Исполнительные механизмы с электродвигателем бывают однооборотные и многооборотные, позиционные и пропорциональные. Схема двухпозиционного исполнительного механизма с двухфазным конденсаторным электродвигателем приведена на рис. 1(а).

Схемы исполнительных механизмов с двухфазными электродвигателями

Рис. 1. Схемы исполнительных механизмов с двухфазными электродвигателями: а — схема двухпозиционного исполнительного механизма; б - схема пропорционального исполнительного механизма

Переключатель SA задает направление вращения ротора электродвигателя, подключая конденсатор С либо к одной, либо к другой обмотке электродвигателя. Если переключателем SA замкнуть цепь, содержащую SQ1, то электродвигатель включается и перемещает выходной орган исполнительного механизма до тех пор, пока он не достигнет крайнего положения и не переключит концевой выключатель SQ1. При этом контакт SQ1 разомкнётся, двигатель отключится. Чтобы перевести выходной орган в другое крайнее положение, необходимо переключить SA. Двигатель реверсируется и будет работать до размыкания контакта концевого выключателя SQ2.

Схема пропорционального исполнительного механизма представлена па рис. 1(б). Замыкание контакта SA1 вызывает перемещение выходного органа исполнительного механизма в прямом направлении, а замыкание SA2 - в обратном. Разомкнув контакт, можно остановить механизм в любом промежуточном положении выходного органа. Потенциометр R используется в качестве датчика положения. Концевые выключатели SQ1 и SQ2 отключают электродвигатель в крайних положениях, защищая механизм от поломки.

Схема исполнительного механизма с трехфазным электродвигателем представлена на рис. 3.

Такой исполнительный механизм может использоваться, например, для управления задвижкой. Схема содержит контактор КМ1, включающий механизм на открывание задвижки, с кнопкой SB1 "открыть" и контактор КМ2 с кнопкой SB2 "закрыть". Концевой выключатель SQ1 срабатывает в крайнем положении "закрыто". На схеме концевые выключатели изображены в среднем положении задвижки, ни один из них не сработал.

Схема исполнительного механизма с трехфазным электродвигателем

Рис. 2. Схема исполнительного механизма с трехфазным электродвигателем

При нажатии кнопки SB1 сработает КМ1 и включит электродвигатель на открывание задвижки. В крайнем открытом положении сработает SQ1 и своим размыкающим контактом отключит КМ1 и, соответственно, электродвигатель, а замыкающим контактом включит лампочку сигнализации EL1 "открыто".

Если после этого нажать кнопку SB2, то сработает КМ2 и включит электродвигатель на закрывание задвижки. Когда задвижка закроется, сработает SQ2, отключит КМ2 и включит сигнализацию "закрыто" (EL2).

Исполнительный механизм оборудован муфтой предельного крутящего момента. В случае превышения момента на валу, например, при заклинивании задвижки в процессе открывания, сработает выключатель SQ3 и отключит электродвигатель, отключив контактор КМ1. При заклинивании механизма в процессе закрывания сработает SQ4 и отключит КМ2 и электродвигатель. Оба выключателя при срабатывании включают лампу индикации EL3 "авария". Кнопкой SB3 можно остановить электродвигатель в промежуточном положении задвижки.

Шкафы управления дроссельным электроприводом ШУ ДЭП

Шкафы управления дроссельным электроприводом (ШУ ДЭП) предназначены для управления асинхронными электродвигателями с фазным ротором в цепи ротора которых включен пусковой дроссель.

Совместно с пусковым дросселем шкафы управления дроссельным электроприводом служат для замены контакторных панелей магнитных контроллеров и активных сопротивлений в роторной цепи. Основные преимущества такой замены заключаются в следующем:

Высокая надежность вследствие отсутствия механических контактов в силовых цепях;

Уменьшение нагрузки на механическую часть привода благодаря ограничению бросков тока и момента пусковым дросселем;

Возможность регулирования скорости электродвигателя в широком диапазоне;

Возможность работы в режиме торможения противовключением (для механизмов передвижения);

Существенное упрощение принципиальной схемы привода;

Простота подключения и настройки;

Практически не требуется обслуживание в процессе эксплуатации;

Работа в широком диапазоне температур (от -40 до +60) без дополнительных средств климат-контроля.

Функциональные возможности шкафов управления дроссельным электроприводом ШУ ДЭП:

Изменение направления вращения двигателя;

Регулирование оборотов электродвигателя в диапазоне от 0 до 80% номинальной скорости;

Задание до четырех пониженных и одной полной рабочей скорости;

Поддержание заданных скоростей во всем диапазоне нагрузок;

Задание темпа разгона электродвигателя;

Вывод электродвигателя на естественную характеристику;

Нулевая, максимальная токовая и конечная защиты привода;

Защита от обрыва фаз.

Все шкафы управления ШУ ДЭП изготавливаются согласно техническому заданию заказчика и с учетом его индивидуальных требований.

Классификация шкафов управления ШУ ДЭП:

В зависимости от выполняемых функций и комплекта оборудования входящего в их состав, шкафы управления ШУ ДЭП могут подразделяться:

По типу управления двигателем:

  • Шкаф управления статором;
  • Шкаф управления ротором;
  • Шкаф управления статором и ротором (комплектный шкаф).

По типу механизма:

  • Шкаф управления механизмом подъема;
  • Шкаф управления механизмом передвижения;
  • Шкаф управления прочими механизмами (рольганги, пресса, листоправильные машины, дробилки и т.д.).

По типу регулирования в роторе:

  • Регулирование скорости электродвигателя;
  • Вывод на естественную характеристику;
  • Регулирование скорости и вывод на естественную характеристику;
  • Отсутствие регулирования (только пуск с помощью дросселя).

По типу управления статором:

  • Тиристорный контактор;
  • Контактор с механическими контактами (по требованию заказчика).

Типовые схемы шкафов управления ШУ ДЭП:

Механизм подъема:

Шкаф управления ШУ ДЭП. Схема функциональная механизма подъема.

Рис.1 — Схема функциональная механизма подъема. Тиристорный реверсивный контактор в статоре. Регулирование скорости и вывод на естественную характеристику.

Механизм передвижения с одним двигателем:

Шкаф управления ШУ ДЭП. Схема функциональная механизма передвижения.

Рис.2 — Схема функциональная механизма передвижения. Один двигатель. Тиристорный реверсивный контактор в статоре. Регулирование скорости.

Механизм передвижения с двумя двигателями:

Шкаф управления ШУ ДЭП. Схема функциональная механизма передвижения с двумя двигателями.

Рис.3 — Схема функциональная механизма передвижения. Два двигателя. Управление статорами от одного тиристорного реверсивного контактора. Регулирование скорости обоих двигателей.

Структура обозначения шкафа управления дроссельным электроприводом ШУ ДЭП:

Ш шкаф
У управления
Д дроссельным
Э электро
П приводом
Х 1 — шкаф управления статором
2 — шкаф управления ротором
3 — комплектный шкаф
Механизм
Х (Х) Х Х Х
мощность электропривода

Тип механизма:
1-передвижение
2-подъем
3-другие механизмы

Тип управления статором электродвигателя:
Т-тиристорный реверсивный контактор (ТРК)
К-контакторы с механическими контактами
0-управление статором отсутствует

*РСТ20-ПО для механизма подъема / РСТ20-ПЕ для механизма передвижения

Пример обозначения шкафа управления статорными и роторными цепями электродвигателя мощностью 45 кВт механизма подъема. Тиристорный реверсивный контактор ТРК в статоре, регуляторы скорости РСТ20-ПО и РСТ20-В в роторе. Регулирование скорости и вывод на естественную характеристику. Степень защиты шкафа IP56. Исполнение для поставок в районы с умеренным и холодным климатом:

Пример обозначения шкафа управления роторными цепями двух электродвигателей мощностью 15 кВт механизма передвижения моста. Регуляторы скорости РСТ20-ПЕ в роторе. Синхронное регулирование скорости обоих двигателей. Степень защиты шкафа IP56. Исполнение для поставок в районы с умеренным и холодным климатом:

Пример обозначения шкафа управления статорными цепями электродвигателя мощностью 11 кВт механизма передвижения тележки. Тиристорный реверсивный контактор ТРК в статоре, регулирование в роторе отсутствует (только пусковой дроссель ДПД). Степень защиты шкафа IP56. Исполнение для поставок в районы с умеренным и холодным климатом:

Читайте также: