Схема шкафа управления дгу

Обновлено: 06.05.2024

Щиты управления и распределения электроэнергии дизельных электростанций

Щиты управления и распределения энергии предназначены для управления, контроля работы, защиты, включения на параллельную работу и распределения электрической энергии ДЭС. В зависимости от мощности и типа генератора и степени автоматизации ДЭС применяют различные типы щитов управления и распределения энергии. Для дизель-генераторов мощностью до 75 кВт типа АД применяют щиты управления, блоки главной линии и коробки выводов мощности.

Управление генераторами ЕСС-5, ЕС и другими неавтоматизированными генераторами производится с помощью специально поставляемых вместе с генераторами панелей управления типов ЩУП, ПУ и др.

Для управления автоматизированными агрегатами до 72 кВт применяются щиты типа ЩДГА-Б и щиты упpaвления ЩАВ-Б, выполненные на съемных блоках с логическими элементами. Для управления автоматизированными по 3-й степени передвижными и стационарными электростанциями мощностью 100 кВт применяют шкафы управления с блоками автоматики на полупроводниковых элементах.

Стационарные автоматизированные по 1-й степени ДЭС с агрегатами АСДА-100 и АСДА-200 со статической системой возбуждения имеют комплектные щиты типа КУ-67М.

Для управления стационарными генераторами с машинной системой возбуждения мощностью от 100 до 750 кВт, автоматизированными по 1-й степени, применяют комплектные щиты типа КУ-64М.

Для управления дизель-агрегатами типа АС мощностью до 100 кВт, автоматизированными по 3-й степени, применяют щиты управления типа ЩАУ-АС.

Автоматизированные агрегаты типа АСДА мощностью до 50 кВт имеют щиты управления типа ЩАУ-1, ЩАУ-2 с блоками автоматики БА-1 и БА-2.

Щиты управления и распределения электроэнергии дизель-генераторов типа АД.

На верхней приборной панели щита управления агрегата АД-20 (рис.1) расположены контрольно-измерительные приборы, аппаратура управления и регулирования. В нижней части щита находятся блок главной линии с автоматическим выключателем и два автоматических выключателя для выводов отбора мощности. Панель для контрольных приборов дизеля расположена сбоку.

Общий вид щита управления (а) и блока дизельных приборов (б) агрегата АД-20

Рис.1. Общий вид щита управления (а) и блока дизельных приборов (б) агрегата АД-20
1 - зажим корпуса; 2 - автоматический выключатель нагрузки;
3 - кнопка проверки ПКИ; 4 - лампа сигнальная;
5 - осветительная арматура с лампами накаливания; 6 - амперметры;
7 - килоомметр; 8 - вольтметр; 9 - потенциометр уставки напряжения;
10 - частотомер; 11 - переключатель вольтметра; 12 - предохранители;
13 - лампа сигнальная "Нормальная работа"; 14 - лампа сигнальная "Авария";
15 - лампа сигнальная "Защита отключена"; 16 - выключатель освещения;
17 - выключатель ревуна; 18 - выключатель защиты;
19 - Приемник указателя уровня топлива; 20 - амперметр; 21 - свеча накала;
22 -выключатель стартера; 23 - свеча подогревателя;
24 - переключатель управления подогревателем; 25 - выключатель накала свечи;
26 - переключатель вида аварий; 27 - лампа сигнальная "Номинальные обороты";
28 - переключатель "Обороты выше-ниже".

Щит управления представляет собой металлическую коробку с откидывающейся передней приборной частью и съемными передними крышками, устанавливаемую на каркас. Каркас устанавливается над генератором и крепится к раме агрегата. Вся аппаратура: трансформаторы тока, конденсаторы и резисторы цепей сигнализации и синхронизации, предохранители и др. - устанавливается на панели внутри щита.

Конструкции других щитов имеют следующие особенности. Щит управления агрегата АД-10 совмещен с блоком главной линии и отбора мощности и имеет один щиток. Фидер отбора мощности агрегата АД-30 расположен на задней стенке щита управления. Блоки управления и контроля за работой дизеля агрегата АД-50, 75 объединены в один щит, а блок главной линии и отбора мощности расположен на задней стенке щита управления.

Щиты управления типов ЩДГА-Б, ЩАВ-Б.

Щиты типа ЩДГА-Б выпускают четырех исполнений в зависимости от мощности дизель-генератора (12, 24, 48 и 72 кВт). На щите установлены автоматический выключатель и контактор, а также приборы (амперметр, вольтметр), счетчик, блок регулирования напряжения и другая аппаратура. Размеры щита составляют 600X700X1800 мм при массе 250 кг.

Схема управления одинаковая для всех четырех исполнений щитов ЩДГА, выполнена на бесконтактных транзисторных логических элементах «Логика-Т».

Съемные блоки с логическими элементами размещены на поворотной раме щита, что обеспечивает хороший доступ к любому из них в процессе эксплуатации.

Щиты ЩАВ-Б предназначены для коммутации источника питания и производства вспомогательных операций ДЭС: подкачки топлива, регулировки температуры, вентиляции и т.д. Схема управления этими щитами обеспечивает работу автоматизированной ДЭС по 3-й степени автоматизации без обслуживающего персонала в течение не менее 400ч. Схемой предусмотрено нормальное питание потребителей от внешней сети, а при исчезновении напряжения питание потребителей осуществляется от дизель-генератора, являющегося резервным источником питания.

Шкафы управления для автоматизированных по 3-й степени дизель-агрегатов АСДА-100 выпускают в двух исполнениях: для передвижных и стационарных ДЭС.

Шкаф управления для стационарных агрегатов АСДА

Рис.2. Шкаф управления для стационарных агрегатов АСДА.

Шкаф управления для стационарных ДЭС (рис.2) имеет сварную конструкцию и выполнен из угловой и листовой стали. В верхней части шкафа размещены приборная панель 5 и блок аппаратуры. На приборной панели расположены контрольно-измерительные приборы, сигнальные лампы, кнопки, выключатели и переключатели управления. Блок аппаратуры состоит из реостатов уставки напряжения, вентилятора шкафа, механизма времени работы датчиков и панели с контакторами, реле и другими элементами электрической схемы.

Для доступа к монтажной стороне приборная пaнель откидывается на шарнире вниз и удерживается в таком положении двумя ограничителями.

В средней части шкафа расположены ячейки для установки и крепления блоков автоматики. Всего имеется шесть блоков автоматики: синхронизатора 4, пуска и остановки 9, контроля напряжения 8, датчиков частоты и мощности 5, сигнализации 2, магнитных усилителей 10. Конструкция всех блоков унифицирована: на литой раме закрепляют два шасси с электрической аппаратурой. Блоки присоединяют к схеме с помощью специальных шлангов, оконцованных колодкой с гнездами.

В гнезда вставляют специальные штыри, закрепленные на шасси блока. В нижней части шкафа управления, закрываемой съемной панелью 1, установлены автоматические выключатели генератора, сети, собственных нужд, а на задней стенке шкафа размещены панель ввода генератора и панели выводов фидера сети. В верхней части шкафа на специальной стойке закреплен блок реле 7, а на левой стороне боковой части шкафа установлен блок селективной защиты 6.

Блок синхронизатора работает при автоматическом включении генератора на параллельную работу. Он выдает команды на подгонку напряжения и частоты синхронизируемого генератора к напряжению и частоте внешней сети, а затем - сигнал на включение контактора генератора на шины внешней сети; блок пуска и остановки коммутирует электрические цепи, обеспечивающие прогрев дизеля, включение насосов, возбуждение генератора, прием нагрузки или синхронизацию, включение на параллельную работу, отключение нагрузки и остановку электроагрегата.

Блок контроля напряжения выдает команды на автоматический пуск резервного агрегата при снижении напряжения сети до 340 В или на остановку генератора при увеличении напряжения в сети более 440 В. Кроме того, блок контролирует напряжение оперативного питания и аккумуляторных батарей.

Блок сигнализации выдает сигналы об аварийном состоянии электроагрегата с помощью световой и звуковой сигнализации.

Блоки датчиков частоты, мощности и магнитных усилителей составляют систему коррекции частоты и мощности параллельно работающих агрегатов.

При работе одного агрегата производится регулирование частоты тока (при ее отклонении от нормы) изменением частоты вращения дизеля. При параллельной работе двух агрегатов блоки датчиков частоты и мощности выдают сигнал, пропорциональный активной мощности. В блоке магнитных усилителей этот сигнал сравнивается с эталонным (заданным) и автоматически распределяется между параллельно работающими агрегатами. Кроме того, блок магнитных усилителей служит для выдачи аварийного сигнала и отключения генератора при перегрузке или переходе его в двигательный режим работы.

Комплектное устройство КУ-б7М состоит из двух свободно стоящих панелей двухстороннего обслуживания закрытого исполнения: управления ПУ-2 и распределения ПР-2. На панели ПУ-2 установлены автоматический выключатель генератора, блоки защиты, сигнализации, синхронизации и управления, корректор напряжения, коммутационная, измерительная и сигнальная аппаратура, а на панели ПР-2 - рубильники для обеспечения разрыва силовой цени, автоматические выключатели линий, лампы сигнализации наличия напряжения на сборных шинах и линейных автоматах, счетчики энергии.

Общий вид и габариты панели ПУ-2 устройства КУ-67М

Рис.3. Общий вид и габариты панели ПУ-2 устройства КУ-67М.
а - панель ПУ-2 для агрегатов АСДА-100 и АСДА-200;
6 - панель ПУ-2 для агрегатов ТМЗ-ДЭ-200 и ТМЗ-ДЭ-104С4:
1 - блок защиты и сигнализации;
2 - блок синхронизации;
3 - блок защиты от повышения частоты вращения

Панели ПУ-2 (рис.3) имеют два исполнения: А для агрегатов АСДА-100 и АСДА-200 и Б для агрегатов ТМЗ-ДЭ-200, ТМЗ-ДЭ-104С4 и обеспечивают 1-ю степень автоматизации указанных выше агрегатов.

Панели ПР-2 для обоих исполнений одинаковы.

Схема комплектного устройства рассчитана на автономную и параллельную работу агрегатов, обеспечивает запуск дизеля и его остановку, включение генератора под нагрузку и на параллельную работу, защиту генератора. Схема предусматривает также контроль работы и защиту дизеля при понижении давления масла, перегреве воды и масла, при превышении допустимой частоты вращения дизеля.

Комплектное устройство КУ-64М состоит из двух панелей: панели управления 01 для управления защиты, сигнализации, регулирования напряжения (регулятор РНА-60) и синхронизации генератора и панели 02 (для генераторов мощностью от 100 до 500 кВт) для пуска генераторов и распределения электроэнергии или панели 11 (для генераторов мощностью свыше 500 кВ) для пуска генератора. Распределение энергии в этом случае производится с помощью специальной панели 13. Внешний вид и размеры панелей 01 и ПУ-2 одинаков, но на последней установлена другая аппаратура.

На панели 01 установлены аппаратура управления (переключатель регулятора напряжения РНА-60, переключатель 1КУ для дистанционного управления двигателем регулятора скорости дизеля, переключатель ЗК для управления автоматическим выключателем генератора, переключатель измерительных цепей ваттметр, различные автоматические выключатели для включения питания), аппаратура сигнализации генераторного автомата, контрольно-измерительные приборы (амперметр, вольтметры, ваттметр, частотомер, счетчик), аппаратура регулирования напряжения (регулятор РНА) и реостат возбуждения, аппаратура автоматической сигнализации (реле разности частот, промежуточное реле синхронизации и резисторы), аппаратура аварийно-предупредительной сигнализации.

На панели 02 установлены автоматические выключатели отходящих линий, автоматический выключатель генератора с электродвигательным приводом, измерительные трансформаторы тока и трансформатор УТП регулятора РНА-60.

Панель 11 в отличие от панели 02 не имеет автоматических выключателей отходящих линий.

На панели 13 установлены только автоматические выключатели отходящих линий для распределения энергии генератора и счетчики активной энергии.

Принципиальная схема цепей управления устройства КУ-64М

Рис.4. Принципиальная схема цепей управления устройства КУ-64М
1 - питание цепей управления переменного тока; 2 - реле контроля напряжения;
3 - реле переключения питания с шин на генератор; 4 - лампа "Отключено";
5 - двигательный привод автоматического выключателя генератора;
6 - лампа "Включено"; 7 - управление двигателем регулятора скорости дизеля;
8 - промежуточное реле защиты; 9 - трансформатор; 10 - выпрямитель и автомат зашиты;
11 - реле разности частот; 12 - измерительные цепи; 13 - к выводам генератора.

На рис.4 приведена принципиальная схема управления устройства КУ-64М. Для включения генератора в сеть после разворота дизель-генератора ключ управления 1КУ ставят в положение "Больше"; при достижении дизелем номинальной частоты вращения с помощью кнопки К4 подают напряжение от сети генератора на реле разности частот ИРЧ: при частоте вращения генератора, близкой к синхронной, реле ИРЧ срабатывает и включает промежуточное реле синхронизации РПС, которое своими контактами замыкает цепь включения реле РУ (реле РБ включено, так как автоматический выключатель генератора отключен), реле РУ срабатывает и своими контактами РУ2 и РУ3 замыкает цепь включения электродвигателя привода Д автоматического выключателя генератора; автоматический выключатель включается, блок-контакты ПК разрывают цепь реле РУ. С помощью кнопки К4 обесточивают реле ИРЧ, и схема приходит в исходное положение.

Секция переключателя ЗКУ, подающая сигнал на включение автоматического выключателя генератора, и контакты реле 1РКН включены последовательно, что не позволяет переключателем ЗКУ включить автоматический выключатель при наличии напряжения на сборных шинах (контакты 1РKH разомкнуты). Генератор отключают от сети с помощью независимого расцепителя НР автоматического выключателя вручную ключом ЗКУ или аварийно от защиты при срабатывании реле 1P3.

При действии не показанных на рис.4 защит от понижения давления масла, перегрева воды и масла, отсутствия воды и превышения допустимой частоты вращения срабатывает выходное реле 1P3 и автоматический выключатель генератора отключается.

Схемы подключения ДГУ к сети

Безопасность эксплуатации ДГУ в качестве резервного или аварийного источника электропитания напрямую зависит от того, насколько грамотно реализована схема подключения дизель-генератора к сети. На практике применяют решения решений, которые обеспечивают переход на автономное электроснабжение в ручном или автоматическом режиме.

Варианты схем подключения ДГУ

Если схема переключения между дизель-генераторами и центральной сетью разработана и собрана неправильно, возрастает риск подачи электроэнергии с обоих источников. Это приводит к выходу из строя не только ДГУ, но и потребителей, которые в текущий момент были подключены к сети.

В стандартные комплекты документации обычно входят электрические схемы дизель-генераторов и несколько вариантов подключения к сети. Но если отсутствует опыт в чтении подобной документации и навыки электромонтажа, то работы по этому направлению следует доверить специалисту.

Включение ДГУ в ручном режиме

В бытовых резервных и аварийных системах энергоснабжения в большинстве случаев реализован переход на автономный источник в ручном режиме. Самое простое решение, к которому прибегают, подключение установки к ближайшей доступной розетке, благодаря чему запитывается вся домовая сеть. Следует понимать, что такая схема управления ДГУ не считается наиболее эффективной, а в отдельных случаях она таит большую опасность. Это связано со следующими факторами:

Требуется обязательное отключение входных автоматов или выкручивание пробок, в противном случае при возобновлении центрального электроснабжения электроэнергия будет поступать из двух источников.

Через розетку, к которой подключена установка, проходит значительный ток при подсоединении нескольких потребителей, это вызывает ее выход из строя. В отдельных случаях возможно повреждение участков проводки, не рассчитанных на подобную нагрузку.

Более правильной считается схема подключения непосредственно в сеть после счетчика с установкой дополнительного автомата на выходе генератора. В этом случае при отключении централизованного электроснабжения отключается сетевой автомат, запускается ДГ, после чего подключается нагрузка. Но и в этом случае при нарушении очередности включения/отключения существует риск подачи питания с двух источников.



Поэтому для ручного запуска следует использовать схему с применением перекидного или спаренного рубильника с блокировкой или реверсивного переключателя. Конструкция этих устройств предотвращает одновременное подключение центрального и автономного источника электроснабжения. Благодаря этому и обеспечивается безопасность эксплуатации.

Подключение дизель-генератора с АВР

При ручном управлении приходится постоянно контролировать наличие тока в основной сети, чтобы вовремя отключить ДГУ. Поэтому более совершенным вариантом считается схема подключения дизель генератора с автозапуском. Автомат ввода резерва (АВР) мониторит состояние центральной сети. При его отключении осуществляется запуск дизель-генератора и при выходе на рабочий режим подключается нагрузка без участия обслуживающего персонала (человека).

Такая система получила распространение и в бытовых, и в промышленных сетях. Особенно интересна схема подключения ДГУ с АВР к ВРУ при наличии двух независимых основных вводов или при необходимости резервирования питания по группам потребителей:

В первом случае в дополнении к АВР «сеть–генератор» между основными вводами включается АВР «сеть­–сеть». Система работает по следующему принципу — при отключении первого ввода нагрузка переключается на второй. ДГУ запускается в работу только в том случае, когда отсутствует питание от обоих основных источников.

В целях экономии практикуют разделение потребителей по категориям важности. Выделятся оборудование, отключения которого от сети будет критичным. Такая группа устройств подключается к центральной сети с обеспечением резервирования при помощи ДГУ. При срабатывании АВР «сеть-генератор» происходит переключение нагрузки на автономный источник питания, остальное обслуживаемое оборудование отключается. Такой подход позволяет применять ДГУ меньшей мощности.

На текущий момент схемы подключения дизель-генераторов с АВР считаются наиболее безопасными и эффективными. Основной плюс такого решения — минимизация влияния человеческого фактора, все переключения осуществляются в автоматическом режиме, что снижает риск возможной ошибки.

Как подключить дизель генератор к трехфазной сети

Схема подключения ДГУ к шинам подстанции для обеспечения питания трехфазных потребителей также может отличаться. Она зависит от типа используемого АВР. Среди применяемых вариантов выделим:

При применении четырехполюсного АВР, осуществляющего переключение 3 фазных и нулевого кабеля, линии заводятся в устройство и подсоединяются к соответствующим шинам аппаратуры.

В трехполюсных АВР (наиболее распространенный вариант) фазные кабели подключаются к соответствующим шинам, о нулевой провод соединяется с общим нулем, его переключение не предусматривается.

Если АВР не укомплектован общей шиной для соединения нуля, то соединение этого проводника выполняется на аналогичном устройстве распределительного щита.

Такие решения используют для подключения трехфазных потребителей электрической энергии. Но во многих случаях трехфазная сеть используется для питания однофазных потребителей. Это позволяет распределить нагрузку по отдельным фазам. В такой ситуации допускается подключение однофазного дизель-генератора. Для этого при помощи перемычек на контакторе ДГУ распределяют ток на 3 фазы сети, никакого негативного воздействия на оборудование такой тип подключения не оказывает.

Электрическая схема ДЭС — подключение в разных режимах

В нормативных документах используют отличающиеся обозначения дизель-генератора на схеме. В большинстве случаев ДГУ представлен в виде окружности с размещенной внутри русской буквой «Г» или латинской «G» со значком переменного или постоянного тока.



Электрическая схема дизель-генератора позволит реализовать правильное подключение устройства к сети и нагрузке. На однолинейных изображают силовые линии, необходимые для соединения отдельных элементов.

Кроме обозначения ДГУ, на схеме отображены пульт управления установкой, АВР, коммутационная аппаратура обводного канала (байпаса), распределительный щит, к которому подключаются потребители.

Электрические схемы подключения ДЭС представлены в пакете эксплуатационной документации на каждую установку.

Принципиальная электрическая схема дизель-генератора

Принципиальная схема отличается большей информативностью. Она дает представление об отдельных элементах ДГУ — генератор и приборы контроля панели управления, зарядной системы, необходимой для поддержания АКБ, регуляторы и другие устройства, обеспечивающие работоспособность оборудования.

На схеме дополнительно дана информация о назначении отдельных контактов, что позволит избежать ошибок при подключении к сети и нагрузке. Кроме того, принципиальная схема дает представление о принципе работы оборудования. Она незаменима при выявлении неисправностей и ремонте электрической части генератора. Схема этого типа также представлена в технической документации на установку.

Схемы АВР для ДЭС

СХЕМА №10. Питание нагрузки осуществляется от сетевого или от автономного источника питания.
На схеме Ввод1 - сетевой, автономный источник - ввод с ДГУ. Нагрузка общая подключена через автоматический выключатель QF3. Между контакторами КМ1 и КМ2 устанавливается механическая блокировка.
РАБОТА СХЕМЫ: при наличии нормального сетевого напряжения на Вводе1 нагрузка запитывается от него по цепи - автомат QF1, контактор КМ1, автомат QF3. При отсутствии нормального напряжения на вводе подается команда на запуск ДГУ, он запускается, выходит на рабочий режим и через QF2,КМ2, QF3 подается питание на нагрузку.
Данная схема может работать в однофазной или трехфазной сети. Для этого необходимо предусмотреть соответствующие изменения.
В схеме не показано управление ДГУ от АВР, ДГУ может включаться самостоятельно (в схеме автоматики имеются решения запуска ДГУ при отсутствии напряжения на сетевом Вводе, или по команде с АВР, обычно типа "сухой контакт".

АВР с ДЭС

СХЕМА №11. Питание нагрузки осуществляется от одного из двух вводов Ввода1, Ввода2 или от автономного источника ДГУ. На схеме три ввода, первый и второй вводы это сетевые, третий ввод - с ДГУ.
Логика работы следующая: при пропадании напряжения на сетевом Вводе 1, переключается питание от Ввода2, или наоборот, если работает АВР от Ввода 2 при пропадании напряжения на этом вводе переключается на Ввод 1. В случае отсутствия напряжения (нормального напряжения) на Вводах 1 и 2, через время Т1 (выдержка времени после пропадания напряжения на основных вводах) подается команда на запуск ДЭС. Питание происходит от ДЭС через КМ4. Питание осуществляется с вводов 1,2 через КМ1 или КМ2 и далее через КМ3. КМ3 введен в схему для обеспечения предотвращения встречного напряжения между появлением напряжения на основном вводе и напряжением с ДГУ, между КМ3 и КМ4 установлена механическая блокировка. Рубильник QS отключает часть нагрузки.

Схема АВР ДЭС

СХЕМА №12.Питание нагрузки осуществляется от внешней сети и двух автономных источников. На схеме три ввода, первый ввод это сетевой, два других ввода от ДГУ одно установленное в контейнере, второе ДГУ в существующем здании. Логика работы следующая: при пропадании напряжения на сетевом вводе, через время Т1 подается команда на запуск ДЭС в контейнере и питании от ДЭС осуществляется пока не закончится топливо (или в случае неполадок, в других случаях). АВР №2 выдает команду на запуск ДГА, находящегося в помещении, после истечении времени Т2, которое устанавливается больше чем время Т1.

Схема АВР ДЭС

Схема №13. Питание нагрузок осуществляется от двух источников питания внешней сети Ввод №1 и Ввод №2 и одного автономного источника Ввод №3 ДГУ. При наличии напряжения на обоих сетевых вводах № 1,2 питание на нагрузки поступает через рубильники с моторизированным приводом.
При наличии нормального напряжения на обоих вводах АВР 1 и АВР2 подают команду на включение 4QS - 7QS в левом положении.
Питание с Ввода №1 на Нагрузку 1 поступает через рубильник 1QS, автоматический выключатель 1QF и далее последовательно через контакты реверсивного рубильника с моторным приводом 4QS, 6QS.
Питание с Ввода №2 на Нагрузку 2 поступает через рубильник 2QS, автоматический выключатель 2QF и далее последовательно через контакты реверсивного рубильника с моторным приводом 5QS, 7QS.
В этом случае питание нагрузки Выхода №2 происходит от рабочего Ввода №1. Первый АВР подает команду 5QS и он переводится в правое положение. Цепь прохождения питания Ввод №1 1QS, 1QF,5QS и далее как и при обычной работе 7QS, 5QF нагрузка Выхода №2.
Отсутствие напряжения на Вводе №1 работа подобная как и в предыдущем случае, за исключением 4QS переводится в другое положение.
Отсутствие напряжения на Вводах №1, №2.
При отсутствии напряжения на обоих рабочих вводах, через время задержки Т1 подается команда на запуск ДГУ. После появления нормального напряжения на Вводе №3 через время задержки Т2 срабатывает АВР №2 и переключает питание нагрузок Выходов №1 и№2 от ДГУ, подается команда на переключение 6QS, 7QS в правое положение. Работа от ДГУ продолжается до тех, пор пока на вводах 1,2 или вводе 1(2) не появится нормальное напряжение - переключение происходит в обратном порядке: подается команда "СТОП" ДГУ, переключаются 6QS, 7QS в левое положение, а 4QS и 5QS в зависимости от того, на каком вводе (вводах) нормальное напряжение.
Реверсивные рубильники с моторным приводом типа ОТМ производства АВВ или Socomec.
Преимущества схемы: наличие механической блокировки между всеми вводами.

СХЕМА №14.На рисунке выше приведено решение похожее на схему №13, но вместо рубильников с моторным приводом применены контакторы. Схема АВР на 80А собрана на восьми контакторах, на три ввода, между парами контакторов установлена механическая блокировка.
Схема позволяет обеспечить защиту от встречного включения вводов во всех вариантах питания, управление контроллером Zelio, коммутирующие элементы - контакторы Шнайдер Электрик:
1. При работе от двух сетевых вводов.
2. Работа обеих нагрузок от одного сетевого ввода, а при восстановлении второго сетевого ввода переключение питания соответственно от своего ввода (в исходное каждая нагрузка подключается к своему вводу). 3. При работе нагрузки №1 и №2 от ДГУ, а с появлением сетевого ввода (вводов) происходит переключение питания от сети.

схема авр с дгу

СХЕМА №15.Схема, аналогична предыдущей (№ 14), за исключением автоматических выключателей на сетевых вводах, вместо двух автоматических выключателей QF1,QF2, в схему установленны автоматические выключатели QF1,QF2,QF4,QF5.
Что нам это даёт? Казалось бы и двух достаточно в схеме.
Преимущество схемы №15 перед схемой №14 в том, что мы выполняем условие защиты линии по входу от перегрузок, селективности по току, если Нагрузка 1 рассчитана на 100А и Нагрузка 2 на 100А, то вводной автоматический выключатель QF1 и QF2 сможем установить в схему на 100А или с запасом, или с соотвествующей характеристикой (A, B, C, D), необходимой для нормальной работы схемы. В схеме №14 необходимо ставить с номиналом по вводу в два раза больше (200А и более), так как через автоматический выключатель проходит ток Нагрузки 1 и Нагрузки 2, в случае пропадания напряжения на вводе 2 (аналогично и для случая с первым вводом).
Можно предположить, что QF6 и QF7 не нужны и их необходимо исключить из схемы, но это справедливо лишь до момента, когда один из автоматов QF6 или QF7 сработал по АВАРИИ.
В случае аварийной ситуации в АВР поступает информация об Аварии, что означает выдать сигнал об Аварии соответствующей нагрузке. На нагрузку нельзя подавать напряжение с любого ввода, пока не будет устранена причина Аварии.

СХЕМА №16. Данная схема предлагается к применению производителями дизельных генераторных установок, подобные схемы можно увидеть в технической документации на станцию. Суть предназначения этой схемы в следующем:
Если установка ДГУ (ДГА) поставляется на объект который запитан с одного ввода, а в случае неполадок на вводе автоматически включается ДГУ (по желанию заказчика) и по команде с контроллера происходит включение питания от ДГУ, при восстановлении нормального напряжения на основном вводе, питание переключается обратно на основной ввод, ДГУ останавливается.
РАБОТА схемы: для проверки напряжение сетевого ввода поступает на контроллер ДГУ, в случае неполадок с сетевым трехфазным напряжением, с контроллера подается команда на отключение контактора КС и на запуск ДГУ, после выхода на нормальный режим дизельной станции, по команде с контроллера ДГУ включается контактор КГ, питание нагрузки осуществляется от автономного агрегата. Для защиты от перегрузок служат автоматические выключатели. К клеммам подключаются цепи автоматики ДГУ. Имеются схемы и с применением 4-х полюсных контакторов.
Существенным недостатком схемы можно считать то, что при неисправном ДГУ или находящемся на техническом обслуживании (и в других случаях) - АВР не работает, на нагрузку не поступает напряжение от сетевого ввода, что вызовет недовольство потребителя.
Решение: для исключения указанного недостатка схему необходимо доработать, дополнительно ввести ручной режим (установить переключатель и желательно еще РКН по Вводу №1).

Схема ВРУ с АВР и ДГУ

СХЕМА №17.Особенности схемы: маломощный ДГУ не в состоянии обеспечить полную нагрузку, а только часть.
В схеме имеется два основных равнозначных ввода, при пропадании обеих вводов запускается дизельная станция, её нагрузочная способность составляет 25 кВт.
Работа схемы управления:
Питание осуществляется от одного из основных вводов Ввод №1 или Ввод №2, через контакторы КМ1 (КМ2) и КМ3. В случае пропадания напряжение на Вводе №1 АВР переключает питание от Ввода №2, (включает контактор КМ2) и наоборот. При аварийном состоянии обеих вводов (контакторы КМ1, КМ2 и КМ3 обесточены и находятся в выключенном состоянии) через время задержки Т1 подается команда на запуск ДГУ. После выхода на рабочий режим дизельной установки, через время задержки Т2 включается контактор КМ4, контактор КМ3 остается в выключенном состоянии, питание подается на приоритетные нагрузки.
В схеме напряжение с вводов сначала подается через рубильники QS1, QS2 и далее через контакторы на общую нагрузку. С общего выхода напряжение поступает через автоматический выключатель к потребителям через свои автоматические выключатели. При такой схеме, необходимо, чтобы перед рубильниками QS 1-2 находились защитные автоматические выключатели (либо в вышестоящем щите).
Для учета электрической энергии предусмотрены электрические счетчики устанавливаемые на оба основных ввода. Контроль входного напряжения и потребляемого тока осуществляется вольтметрами и амперметрами, вольтметры с переключателем для измерения по фазно линейного и фазного напряжений.

Схема АВР с 2 входами (приоритетом) и ДГУ

В данном варианте исполнения АВР - два ввода и ввод от ДГУ (Схема №21). НАГРУЗКА №1 без приоритета, НАГРУЗКА №2 с приоритетом.
1. При наличии напряжения на Вводах 1 и 2 напряжение питания поступают на соответствующие нагрузки 1 и 2.
На Нагрузку 1 напряжение поступает от Ввода 1 → QS1 → QF1.
На Нагрузку 2 напряжение поступает от Ввода 2 → QS2 → QF2.
2. При пропадании напряжения на Вводе №1 QS1 отключается. Напряжение на нагрузку №2 продолжает поступать от Ввода №2.
3. В случает пропадания напряжения на Вводе №2, а на Вводе № 1 напряжение в норме, то в этом случае отключается автоматический выключатель с моторным приводом QF1 обесточивая Нагрузку №1. Включается QF3 и на нагрузку №2 подается напряжение QS1 → QF3, при этом QS2 и QF2 находятся в выключенном состоянии.
4. В случае пропадания напряжения на обоих вводах автоматический выключатель с моторным приводом QF1, моторизированный рубильник QS2 переводятся в выключенное состояние (питание на отключение осуществляется от ИБП), подается команда на запуск ДГУ, после выхода на нормальный режим ДГУ, питание подается на Нагрузку №2 по цепи ДГУ → QS2 → QF2.
Механическая блокировка между автоматическими выключателями QF2 ↔ QF3 исключает возможность "встречного напряжения".

АВР с ВРУ
АВР и ВРУ

На фото показан исполненный по вышеуказанной схеме электрический щит.
1. На левой фотографии общий вид ВРУ с АВР: на панели расположены контрольные приборы с переключателями, лапы сигнализации. На левой половине шкафа в верхнем ряду находятся амперметры для измерения контроля тока нагрузки от сетевых вводов 1 и 2, вольтметры для измерения напряжения 1 и 2 вводов.
В верхнем ряду вольтметр (под ним переключатель) для контроля напряжения от ДГУ, для измерения тока потребляемого от ДГУ амперметры в каждой фазе.
Ниже расположены лампы индикации состояния вводов АВР, переключатель режима работы и выбора ввода в ручном режиме, переключатель отключения цепи запуска ДГУ.

Секция ВРУ и АВР
АВР

2. На втором и третьем снимке показан монтаж внутри шкафа, пластроны защиты от поражения электрическим током, слева вверху оставлено место для установки счетчика электроэнергии.

Схема АВР с ДЭС

СХЕМА №18.Схема АВР с одним основным вводом (QS1) Ввод от ЩАВР1 и с питанием от автономного источника Ввод ДГУ (QS2). При этом должны быть вышестоящие защитные аппараты (автоматические выключатели, предохранители).
Через QS1 и защитный автоматический выключатель SF1 напряжение от сети (основной ввод) подается на KV1, если имеется напряжение и оно в норме, то срабатывает KV1, подает сигнал в схему ДГУ, что напряжение сетевое в норме, при отсутствии сигнала, цепь запуска ДГУ замкнута, тем самым самым запускается ДГУ и при достижении нормального напряжения поступает через включенный QS2, контакты КМ2 на нагрузку через автоматы QF1 и QF2.
В схеме автоматики (напряжение от сети отсутствует) напряжение от ДГУ через QS2, SF2 поступает на реле времени KT1, через время задержки Т замыкается контакт KT1.1 и включается контактор КМ2, тем самым напряжение поступает на нагрузку на автоматы QF1,QF2. Зажигается лампа HL2- Генератор.

СХЕМА №19. В данной схеме два основных ввода и ввод от автономного источника питания.
Между вводом №1 и Вводом №2 устанавливается механическая блокировка.
В этом решении отсутствует механическая блокировка между основными вводами и ДГУ.
Работа схемы: При наличии нормального напряжения на Вводе №1 или Вводе №2 напряжение поступает через контакты КМ1 или КМ2 (зависит от АВР - имеется ли приоритет ввода, или где раньше появилось напряжение на каком вводе).
В случае пропадания напряжения на основных вводах, через время Т2, подается сигнал на запуск ДГУ, оно запускается и после выхода на режим (необходимо определенное время) и появления нормального напряжения через КМ3 подает напряжение на нагрузку.

СХЕМА №20. Схема рассчитана на четыре ввода: три основных ввода и ввод от ДЭС, механической блокировки между вводами нет. Для уменьшения размеров и стоимости устанавливаются автоматические выключатели с моторным приводом.
1. На структурной схеме показан пример АВР с общей нагрузкой, к выходу которого подключаются три отходящих фидера.
2. В данной схеме ДГУ должен обеспечивать полную мощностью потребляемой нагрузки, в примере потребляемый ток 160А, поэтому ток автоматических выключателей на каждом вводе одинаков.
3. При необходимости устанавливаются электрические счетчики нужного типа.
4. Управление работой моторных приводов осуществляется программируемым контроллером, при этом необходимо учитывать, что между включениями и отключениями делается некоторая задержка по времени, что позволит увеличить надежность работы данной схемы.
5. Команда на запуск и остановку ДГУ подается с контроллера, при пропадании напряжения на основных вводах, при восстановлении напряжения происходит переключение на основной ввод.
6. Для уменьшения количества электрических связей данные мониторинга могут передаваться по протоколу MODBUS через интерфейс RS-485 и выводиться на ПК, но при этом можно реализовать и по другому передачу информации.

Щиты управления ДГУ

Фото продукции, изготовленной на комплектующих отечественного производства и импортных комплектующих.

Для увеличения изображения кликнуть по картинке

Шкаф управления ДГУ
Контроллер ДГУ
Щит автоматического включения ДГУ

По требованиям заказчика производим доработку шкафов управления. На рисунке слева показано фото щита управления дизельной электростанции, доработанной по требованиям заказчика. На фото в середине контроллер генераторной установки марки InteliLite NT AMF 25, применяемый для изготовления щитов управления ДЭС и ДГУ.
На фото справа АВР для двух вводов, один из которых ввод c ДГУ, команда на запуск и остановку ДГУ производится от шкафа АВР, ток 125А, мощность 75 кВа.

Шкаф управления ДГУ
Щит управления ДГУ
Щит управления ДГУ

Фото шкафов управления для дизельной электростанции на номинальный ток 500А и 800А. Автоматические выключатели производства Контактор ВА50-43Про на 630а и ВА50-43Про на 1100А.

Особенности АВР для ДГУ

Автоматический ввод резерва с применением ДГУ можно построить с применением специального контроллера (смотрите выше по тексту с фото), или на отдельных элементах. Для более удобной эксплуатации применяется контроллер и шкаф АВР, иногда называется ЩАВР. Щиты ДГУ или шкафы ДГУ необходимы для управления дизель-генераторной установкой. Команда на запуск ДГУ подается на контроллер (см.фото ниже).
При построении схемы АВР для электростанции учитываются особенности:
1. Приоритет работы от основного ввода.
2. После пропадания напряжения команда на запуск ДЭС должна подаваться с выдержкой времени, т.к. напряжение может восстановиться и команду придется снимать, что не очень хорошо скажется на работе двигателя. Регулировка задержки может устанавливаться пользователем в пределах от единиц до нескольких десятков секунд.
3. После выхода на режим ДЭС, а это прогрев, установка нормального давления и готовность к принятию нагрузки, включается контактор ДЭС, задержка включения тоже регулируемая, от единиц до нескольких десятков секунд, осуществляется пользователем.
4. Порой требуется, при восстановлении напряжения, отключить ДЭС, но осуществить не сразу. Вначале отключается контактор в АВР, подающий питание от станции, далее двигатель работает без нагрузки определенное время, пока не понизится температура до нужного значения.
5. Команда на ПУСК может подаваться постоянно (замкнутые контакторы), а иногда требуется подавать команду "Пуск" в течении 2-3 секунд, и если запуск не произошел, то через 5-30 секунд повторить цикл заново. Таких циклов обычно один - четыре, соответственно команда "СТОП" подается отдельно с АВР.
6. Необходимо учитывать, что у ДГУ, как правило, система четырехпроводная TN-C. Согласно ПУЭ, издание 7, в вводном устройстве должна быть система TN-C-S, т.е. PE и N разделены. Таким образом, силовые линии питания, идущие с АВР к потребителям пятипроводные, но в некоторых конкретных случаях возможно и другое решение.
7. Особо следует отметить остановку двигателя генератора. Команда на остановку может быть с задержкой до 5-7 минут, до достижения необходимой температуры и это время зависит от мощности ДГУ и др.

АВР ДГУ

АВР для ДГУ
АВР ДГУ
АВР для ДГУ

Шкаф АВР на два ввода с ДГУ ток 100А, мощность 60 кВа, на контакторах с механической блокировкой. Авр на 160А, два ввода для работы с дизельной станцией, комплектация ABB, Schneider, LS.

ЩАВР для ДГУ 80А
проверка щита
АВР для ДГУ 80А

Сверху изображён щит АВР (ЩАВР) с одним вводом от сети и вторым вводом от дизеля 160А. По центру – проверка (прозвонка) электрического щита мультиметром. Проверка позволяет убедиться, что все соединения выполнены правильно и в цепи нет разрывов.Справа на фото - серия шкафов АВР на два ввода с ДГУ ток 80А в процессе изготовления, предназначены для работы с дизельными станциями.

АВР для ДГУ 200А
АВР 630А
АВР 800А

Вариант шкафа АВР на два ввода с ДГУ, ток 200А. Шкаф АВР на два ввода с ДГУ, ток 630А. Шкаф АВР на два ввода с ДГУ, ток 800А

Алгоритм работы АВР и ДЭС

Ниже приведен алгоритм работы АВР с двумя вводами( одним вводом и ДЭС).
Данный щит управления был разработан для объекта Сочи, это ВРУ-21Л. Остановимся на данном примере и рассмотрим работу АВР с контроллером, управляемым двумя вводами и ДЭС.

АВР два ввода и ДГУ
Панель АВР
Схема АВР

На фото слева ВРУ с АВР в процессе изготовления, на фото в середине передняя панель управления, на фото справа диаграммы работы: верхняя при неудачном запуске ДГУ, нижняя при удачном запуске ДГУ.
Работа АВР с ДГУ
При пропадании напряжения (пропадание фазы, увеличение или уменьшение напряжения от установленного значения ) на вводах 1 и 2, реле контроля напряжения KV1 и KV2 отключаются и контакты исполнительного встроенного реле становятся в исходное положение, через время задержки Т1 (5с) с выхода контроллера подается периодически сигнал запуска (прокрутка)ДГУ длительностью 10с в течении 52 сек.
Если ДЭС не запустится в течении этого времени (52с) контроллер выдает сигнал АВАРИЯ ДЭС, пусковой цикл прекращается.
Питание контроллера ДГУ при отсутствии напряжения 220 осуществляется от АКБ ИБП.
При восстановлении напряжения на вводе 1 (2), контактор питания ВРУ от ДГУ отключается, сигнал "СТОП" подается с задержкой на ДГУ, он будет работать 15с на холостом ходу для охлаждения.
Управление порядком включения и переключения АВР обеспечивает контроллер Zelio Logic производства Schneider Electric.
То есть, реализована полная автоматизация ДГУ (ДЭС). Также предполагается возможность ручного режима работы.
Т1-время задержки 5с, после пропадания напряжения на основном (основных) вводах.
Т2-цикл запуска 52с
Т3-время Пуска ДЭС (прокрутка), 10с
Т4-время паузы между пусками ДЭС, 10с
Т5-время задержки 3с для включения сигнализации "АВАРИЯ ДЭС"

Механическая блокировка контакторов в АВР

Довольно часто применяется в схемах АВР электронная и механическая блокировка контакторов. Когда имеется один основной ввод, а второй от ДЭС, то блокировка между контакторами применяется в стандартном исполнении и проблем не возникает. В случае однолинейной схемы на два ввода и один ввод от ДЭС, взаимная механическая блокировка трех выключателей может применяться при применении выкатных автоматов в литом корпусе (блокировка тросиками подвижной и фиксированной частей ), к примеру производства АВВ, но это экономически целесообразно на больших токах, а что делать в случае не очень больших?
Рекомендуется использовать схему с четырьмя контакторами и попарно включить механическую блокировку.
Ниже показан вариант изготовления АВР ДГУ 1250А, применен реверсивный рубильник Q1 производства ABB. При переводе реверсивного рубильника Q1 из положения "I" в положение "II", и обратно, он проходит нулевое положение, таким образом исключается встречное включение вводов.

АВР с применением контроллера для ДЭС

Часто возникает вопрос, как можно использовать контроллер дизельной станции для управления, так как в нем имеются необходимые функции для управления внешними контакторами.
На фото ниже вариант исполнения на ток 1250А с использованием контроллера дизельной электростанции.

АВР 1250А
Монтаж АВР 1250А
Ошиновка АВР

Фото АВР на 1250А, фрагмент монтажа элементов схемы, медная шина для подключения вводов. Управление моторизированным приводом осуществляется с панели управления двигателя Perkins, на которой установлен контроллер.
Питание нагрузки при дистанционном/местном управлении осуществляется от основного (сеть ~380 В 50 Гц) или резервного (ДГУ) ввода, путем включения реверсивного рубильника в соответствующее положение (положение "I" - основной ввод, положение "II" - резервный ввод).

АВР на четыре ввода

АВР был изготовлен для ЦОД г.Хабаровска

АВР с ДГУ на 4 ввода
Монтаж АВР с ДГУ

ВРУ с АВР на четыре ввода: два сетевых ввода на ток по 600А и два ввода по 400А от ДГУ, выполнен на автоматических выключателях с моторным приводом, подключается нагрузка гарантированного питания. В случае запуска ДГУ питание негарантированной нагрузки отключается. Таким образом, с помощью моторов осуществлено управление вводами ДГУ.
Кабельные вводы входящие и отходящие подключаются сверху, каждый кабельный ввод выполняется 2-мя кабелями СИП по 150 мм кв. с возможностью доумощнения вводов и прокладки 3-й линии.
Очередность приоритета работы вводов установлена в порядке:
- Ввод №1 от ТП – основной;
- Ввод №2 от ТП – резервный;
- Ввод №3 от ДГУ – основной;
- Ввод №4 от ДГУ – резервный.

Схема АВР с ДГУ на 4 ввода

Схема щита ВРУ с АВР на четыре ввода, два из них от ДГУ.
Сборка АВР для ДГУ

Оборудование изготовленное для Камчатского края, Соболевский район, с. Соболево. Ниже представлен пример питания потребителей с трёх секций шин. Эти секции шин питаются от 4 дизельных генераторов (ДГУ). На фото изображена симуляция работы системы, привязка всех составляющих, которая позволяет выводить всю информацию на сенсорную панель оператора Kinco. С данного устройства можно оперативно управлять технологическими процессами, а также накапливать и хранить данные по основным рабочим параметрам системы.

контроллер дгу
панель kinco

На панели отображаются данные по мощности генераторов, токи, напряжения, а также потребляемая мощность отходящих линий. Если же нагрузка большая и мощности дизель-генератора не хватает, то подключается резервный ввод с помощью рубильников производства ABB OT1000E03. Происходит запуск резервной ДГУ.
Рубильники отходящих линий, в свою очередь, имеют взаимную блокировку, дабы избежать встречного включения источников питания. То есть, каждая отходящая линия может питаться только от одной секции шин. Также возможна реализация с синхронизацией генераторов и их параллельной работой. В этом случае напряжение и частота фаз двух вводов совпадают между собой и возможно питание одной секции шин с нескольких разных вводов одновременно. Для этого существуют специальные устройства синхронизации.

автоматизация дэс
щит дгу

Данный распределительный щит изготавливается из 7 панелей ШНС. На лицевую сторону выносятся ручки рубильников, измерительные приборы, сигнализация.

Рубильник ABB
Щит на четыре ввода

Щит
Щит на рубильниках

Вид на монтаж щита на четыре ввода, проверка правильности показаний электрощитовых приборов, ток, напряжение, мощность.

Щит на три ввода от ДЭС
Монтаж щита для ДЭС

Фото готового щита для подключения трех источников автономного питания (ДЭС), мониторинг состояния оборудования выводится на удаленную панель.

Принципиальные электрические схемы дизельных электростанций

Принципиальная электрическая схема агрегата АД-20М (см. рис.1).

Принципиальная схема дизель-генератора АД-20М

Рис.1. Принципиальная схема дизель-генератора АД-20М

Для контроля за работой генератора в схеме предусмотрены вольтметр V для измерения линейных напряжений с переключателем ПП1, амперметр А для измерения токов трех фаз с переключателем ПП2, ваттметр W и частотомер Hz. В схеме имеется также прибор постоянного контроля изоляции ПКИ-1, а для электробезопасного обслуживания установлено реле РБП.

Для параллельной работы с другими ДЭС или агрегатами в схеме имеется трансформатор ТС с резистором СРС и выключателем ВЗ для шунтирования этого резистора при автономной работе генератора. Уставка напряжения выставляется резистором РУ.

В схеме предусмотрены цепи синхронизации с лампами 4ЛС и 5ЛС и резисторами R1-R2, сигнализации положения с лампами 6ЛС-10ЛС, питающимися через конденсаторы С1-С5, и цепи блокировки с реле РБ и выпрямительным мостом Д17-Д20.

Через автоматический выключатель АВ4 и вилку В происходит соединение с другим генератором для параллельной работы.

Принципиальная схема электростанции ЭСДА-30. схема силовой части ДЭС. схема управления ДЭС

Рис.2. Принципиальная схема электростанции ЭСДА-30.
а - схема силовой части ДЭС;
б - схема управления ДЭС.

Принципиальная электрическая схема передвижной ДЭС типа ЭСДА-30 (рис.2).

Передвижная ДЭС типа ЭСДА-30 автоматизирована по 1-й степени и предназначена для питания силовой и осветительной нагрузки. В схему силовой части агрегата входят обмотки генератора с резонансной статической системой возбуждения, корректор напряжения на полупроводниковых элементах КН, блок параллельной работы БПР с трансформатором тока, трансформаторы тока для измерительных цепей и выводы отходящих линий с автоматическими выключателями: генератора АВГ, резервной сети АВС и нагрузки АВ1.

В схеме предусмотрена автоматическая система регулирования напряжения с помощью схемы компаундирования и полупроводникового корректора напряжения. Схема обеспечивает точность регулирования напряжения ±1% номинального значения при изменении нагрузки от 0 до 100%.

Для контроля за работой генератора предусмотрены вольтметр V, амперметр А, киловаттметр KW, частотомер Hz и переключатели ПА и ПВ. Постоянный контроль изоляции осуществляется прибором ПКИ. Цепи синхронизации с выключателем ВС и лампой позволяют включать генератор на параллельную работу с сетью и другими агрегатами. Схема предусматривает пуск агрегата со щита управления кнопкой КнП и его остановку кнопкой КнО, автоматическую остановку агрегата в аварийном режиме с работой сигнализации и ручную систему подогрева двигателя.

Перед запуском включают выключатели батареи ВБ, приборов ВП, реле питания РК, систему подогрева двигателя с панели управления подогревателем (свеча накаливания СН, топливный клапан ТК, электродвигатель Д). На период пуска выключатель защиты ВЗ выключается. После пуска двигателя кнопкой КУМ осуществляется увеличение частоты вращения двигателя с помощью изменения положения рейки топливного насоса, на которую действует электродвигатель постоянного тока ДНО.

При достижении номинальной частоты вращения двигателя включается нагрузка с помощью автоматов АВГ и AB1. В случае необходимости нормальная остановка агрегата производится кнопкой КнО, но перед этим необходимо отключить выключатель автомата АВГ (снимается нагрузка генератора) и выключатель ВЗ (отключается защита двигателя). Кнопкой КнО подается питание на обмотку соленоида закрытия топлива СЗТ, который действует на рейку топливного насоса. Подача топлива в двигатель прекращается, и он останавливается.

При понижении давления масла в системе смазки, повышении температуры воды в охлаждающей системе или разносе двигателя срабатывает соответствующее реле (РДМ, РКО или РТВ) и подается сигнал на реле РЗ, которое воздействует на соленоид воздушной захлопки СЗВ, останавливает двигатель и отключает автомат АВГ, снимая нагрузку с генератора; одновременно работает аварийная световая сигнализация.

Принципиальная электрическая схема стационарной ДЭС типа АСДА-100 с устройством КУ-67М (рис.3).

Схема силовой части агрегата и автоматической системы регулирования напряжения, за небольшим исключением, аналогична схеме ЭСДА-30. К шинам панели ПР-1 через автоматы 1В-4В подключены кабели, питающие потребителей электроэнергии агрегата.

Для контроля параметров генератора предусмотрены амперметр, вольтметр, частотомер и ваттметр. Устройство КУ-67М обеспечивает автоматизацию по 1-й степени, в том числе дистанционный пуск и остановку дизеля, включение генератора на обесточенные шины и на параллельную работу, отключение генератора, защиту и сигнализацию дизеля и генератора.

Для нормального пуска дизеля (рис.3,6) поворотом переключателя 1К в положение "Больше" приводят во вращение электродвигатель ДР, который выводит рейку топливного насоса в положение, соответствующее промежуточной частоте вращения дизеля (определяется настройкой микровыключателя В2), при этом загорается лампа 7ЛK. Когда рейка достигает определенного положения, микровыключатель В2 срабатывает и останавливает двигатель ДР, лампа 7ЛK гаснет. Нажатием кнопки КП замыкают цепь контактора 2К, включают маслопрокачивающий насос ДМ. Когда давление масла в масляной магистрали дизеля достигает значения настройки датчика давления масла 1ДДМ, последний срабатывает, замыкая цепь лампы 3ЛK и реле 2РИ, которое своими контактами замыкает цепь включения стартера. Дизель запускается. По импульсу от зарядного генератора замыкается цепь реле удавшегося запуска 1РИ. Лампа ЗЛК гаснет, загорается лампа 2Л3.

Дизель прогревается при промежуточной частоте вращения; при достижении рабочей температуры воды датчик 1ДТВ размыкает цепь лампы 2Л3 и она гаснет, а контакты 1ДТВ шунтируют микропереключатель В2. Поворотим ключа 1КУ в положение "Больше" повторно включают электродвигатель ДР; загорается лампа 7ЛК. Двигатель ДР включается микровыключателем ВЗ, который настроен на максимальную частоту вращения холостого хода дизеля.

При экстренном пуске дизеля включают выключатель Т1, шунтирующий микропереключатель В1, а все остальные операции осуществляют, как и при нормальном пуске дизеля.


Рис.3,а. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М

Для включения генератора на обесточенные шины (см. рис.3,а):

выбирают ручной или автоматический режим регулирования напряжения и переключают ТВ1, при автономной работе переключатель ставят в положение "Без статизма";

включают автоматический выключатель 2АВ и подготавливают схему включения электродвигательного привода автоматического выключателя генератора. Напряжение на эту схему подается со сборных шин через размыкающие контакты РПН, а при отсутствии напряжения на шинах - от возбужденного генератора через замыкающие контакты РПН. После разворота генератора до номинальной частоты вращения нажатием кнопки КнВ в течение 2-3 с подают начальное возбуждение от аккумуляторной батареи на зажимы ротора генератора. Генератор возбуждается;

напряжение при ручном регулировании устанавливают с помощью резистора СУ, при автоматическом - резистора СУН;

поворотом ключа 2КУ в положение "Включено" замыкают цепь реле РУ. Срабатывая, оно замыкает свои контакты в цепи электродвигателя привода автоматического выключателя. Автоматический выключатель генератора включается. Загорается лампа 1ЛК, а лампа 1ЛЗ гаснет.

Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М. Схема автоматики ДЭС.

Рис. 3,б. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М.
Схема автоматики ДЭС.

Для включения генератора на параллельную работу:

переключатель ТВ1 устанавливают в положение "Параллельная работа", ТВ2 - в положение "Статизм", а переключатель Т4 - в положение "Медленно", что обеспечит уменьшение скорости нарастания частоты вращения дизеля при синхронизации генератора;

запускают дизель и сопротивлением СУН устанавливают на генераторе напряжение, равное напряжению сети. Генератор на параллельную работу включается невозбужденным. Для этого включают выключатель ТЗ, шунтирующий обмотку возбуждения генератора;

после того как напряжение генератора упадет до значения, близкого остаточному, поворотом ключа 1КУ в положение "Больше" подают импульс на включение автоматического выключателя генератора В. Реле РП срабатывает, самоблокируется и замыкает цепи реле ИРЧ;

при достижении генератором частоты вращения, близкой к синхронной, реле ИРЧ срабатывает и включает промежуточное реле синхронизации РПС. Своими контактами реле РПС замыкает цепь включения электродвигательного привода автоматического выключателя генератора;

генератор включается в сеть недовозбужденным, так как его обмотка возбуждения замкнута накоротко контактами выключателя гашения поля ВГП. После включения генераторного автомата обесточивается ВГП и размыкает свои контакты, шунтирующие обмотку возбуждения генератора;

генератор возбуждается и втягивается в синхронизм. Лампа 1ЛK загорается. Выключатель Т4 переключают в положение "Быстро", и генератор набирает нагрузку. Для нормальной остановки дизеля: отключают поворотом переключателя 2КУ автоматический выключатель генератора В, а поворотом переключателя 1КУ (В положение "Меньше") замыкают цепь обмотки левого вращения электродвигателя ДР, при этом рейка топливного насоса выводится в положение, соответствующее промежуточным оборотам дизеля;

дизель охлаждается до температуры настройки датчика 2ДТВ, который, срабатывая, размыкает цепь лампы 6Л3 и шунтирует микропереключатель В2;

повторным поворотом переключателя 1КУ рейка выводится в положение, соответствующее нулевой частоте вращения дизеля. Электродвигатель ДP выключается микропереключателем B1. Дизель останавливается.

Схемой предусмотрены защита и контроль работы дизеля при перегреве воды и масла, понижении давления масла и разносе.

При срабатывании датчика контролируемого параметра замыкается цепь выходного реле защиты 1P3 и срабатывает соответствующее указательное реле. Контакт реле 1РЗ замыкает цепи табло "Авария" и звукового сигнала (при замкнутом положении выключателя Т2). Другой контакт реле 1РЗ замыкает цепь независимого расцепителя автоматического выключателя генератора и отключает его.

Рейка топливного насоса автоматически выводится на нулевую частоту вращения. Дизель останавливается.

При срабатывании защиты от разноса одновременно с отключением генератора срабатывает автоматическое стоп-устройство дизеля АСУ. Для предотвращения ложного срабатывания защиты от понижения давления масла в цепь соответствующего сигнального реле включается контакт реле 1РИ, который контролирует запуск дизеля. Таким образом, контроль за понижением давления масла осуществляется только в том случае, если дизель запущен и контакт 1РИ замкнут.

Принципиальная схема дизель-генератора АСДА-100 полупроводниковыми блоками автоматики

Рис.4. Принципиальная схема дизель-генератора АСДА-100 полупроводниковыми блоками автоматики

Принципиальная электрическая схема АСДА-100, автоматизированного по 3-й степени (рис.4).

В схеме синхронный генератор со статической системой возбуждения показан в свернутом виде. На рис.4 показана силовая схема АСДА-100. Элементы блоков и автоматики показаны свернутом виде. Силовая цепь и цепи регулирования напряжения генератора состоят из резонансной статической системы возбуждения, корректора напряжения (на схеме не показан), блока управления параллельной работой БУ с трансформатором ТТ1, автоматического выключателя генератора АГ и сети АС, контакторов КФГ и КФС, предназначенных для дистанционной автоматической коммутации силовой цепи, реверсивного двигателя ДУН, регулирующего с помощью сопротивления СУН уставку напряжения, трансформаторов тока ТТ2-ТТ7 для питания цепей измерения тока, блока датчика мощности и частоты ДМЧ и блока контроля мощности БКМ.

Контроль и измерение параметров генератора производятся амперметром А, ваттметром W, частотомером Hz, вольтметром V.

Переключатель ВВ позволяет производить измерения на различных фазах (А,В,С) с использованием одного прибора.

При ручной синхронизации ненагруженного электроагрегата с сетью переключатель синхроноскопа ВСх устанавливают в положение I. В этом случае сигнальная лампа ЛC1 включена контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов TH1 и ТН2 и находится под напряжением биений с амплитудой, изменяющейся от нуля до двойного значения напряжения вторичных обмоток этих трансформаторов. Частота биений равна разности частот синхронизируемых источников питания. Выключатель статизма ВС устанавливается во включенное положение и шунтирует часть сопротивления RП2 в блоке управления БУ. Сопротивлением установки напряжения СУН напряжение синхронизируемого электроагрегата устанавливается равным напряжению сети, а кнопками изменения частоты вращения двигателя устанавливается частота генератора, равная частоте сети. Включение электроагрегата на параллельную работу с сетью осуществляется контактором фидера генератора КФГ путем замыкания контактов кнопки включения контактора генератора в момент погасания сигнальной лампы ЛC1.

При ручной синхронизации нагруженного электроагрегата с сетью переключатель синхроноскопа BC устанавливается в положение III. При этом лампа синхроноскопа ЛС1 подключается контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов ТН1 и ТНЗ и находится под напряжением биений. Напряжение и частота генератора устанавливаются, как и при ручной синхронизации ненагруженного электроагрегата с сетью. Включение нагруженного электроагрегата на параллельную работу с сетью осуществляется контактором фидера сети КФС.

Цепи собственных нужд получают питание от генераторного фидера через автоматический выключатель АСН. К собственным нуждам электроагрегата относятся устройства и цепи оперативного питания, поддержания горячего резерва, дозаправки масла и т.д.

Питание схемы автоматического управления осуществляется блоком питания. Основным источником постоянного напряжения является кремниевый выпрямительный агрегат со стабилизирующим напряжением, а резервным - аккумуляторные батареи.

Поддержание дизеля в состоянии горячей готовности производится электронагревателем ТЭН, расположенным в поддоне (водяной полости) масляного бака.

Питание на электронагреватель ТЭН подается через контакты контактора электронагревателя КЭП и предохранитель.

Контакторы КЭП включаются автоматически датчиком температуры охлаждающей жидкости, выходные контакты которого замыкаются при снижении температуры до +37°С и размыкаются при повышении ее до +45°С.

Дозаправка расходного масляного бака производится электронасосом, двигатель которого получает питание через контакты контактора заправки масла КЗМ и предохранители.

Включение контактора КЗМ осуществляется вручную кнопкой или автоматически с помощью реле заправки масла. При снижении уровня масла реле включает контактор КЗМ, а при повышении уровня масла отключает его. Аналогично работает и топливозакачивающий насос ДЗТ.

Пуск и остановку АСДА-100 осуществляют автоматически или дистанционно нажатием кнопки "Пуск" или "Стоп".

Схема предусматривает также автоматическое включение АСДА-100 на параллельную работу по методу точной синхронизации с помощью блоков автоматики.

Автономно работающий АСДА-100 поддерживает частоту тока с точностью 50±0,5 Гц независимо от нагрузки. Для поддержания частоты в заданных пределах служит система коррекции частоты, состоящая из датчиков частоты и магнитных усилителей.

Схема АСДА-100 обеспечивает защиту при следующих аварийных режимах: отключение автомата генератора, неудачный пуск и разнос двигателя, отсутствие возбуждения на генераторе, падение давления масла, перегрев дизеля и т. д. В этих случаях по сигналу соответствующего реле срабатывает реле аварии и выдает команду на остановку дизеля с одновременной выдачей сигнала.

Читайте также: